691 resultados para Logistic Models
em Queensland University of Technology - ePrints Archive
Resumo:
It is important to examine the nature of the relationships between roadway, environmental, and traffic factors and motor vehicle crashes, with the aim to improve the collective understanding of causal mechanisms involved in crashes and to better predict their occurrence. Statistical models of motor vehicle crashes are one path of inquiry often used to gain these initial insights. Recent efforts have focused on the estimation of negative binomial and Poisson regression models (and related deviants) due to their relatively good fit to crash data. Of course analysts constantly seek methods that offer greater consistency with the data generating mechanism (motor vehicle crashes in this case), provide better statistical fit, and provide insight into data structure that was previously unavailable. One such opportunity exists with some types of crash data, in particular crash-level data that are collected across roadway segments, intersections, etc. It is argued in this paper that some crash data possess hierarchical structure that has not routinely been exploited. This paper describes the application of binomial multilevel models of crash types using 548 motor vehicle crashes collected from 91 two-lane rural intersections in the state of Georgia. Crash prediction models are estimated for angle, rear-end, and sideswipe (both same direction and opposite direction) crashes. The contributions of the paper are the realization of hierarchical data structure and the application of a theoretically appealing and suitable analysis approach for multilevel data, yielding insights into intersection-related crashes by crash type.
Resumo:
This paper investigates relationship between traffic conditions and the crash occurrence likelihood (COL) using the I-880 data. To remedy the data limitations and the methodological shortcomings suffered by previous studies, a multiresolution data processing method is proposed and implemented, upon which binary logistic models were developed. The major findings of this paper are: 1) traffic conditions have significant impacts on COL at the study site; Specifically, COL in a congested (transitioning) traffic flow is about 6 (1.6) times of that in a free flow condition; 2)Speed variance alone is not sufficient to capture traffic dynamics’ impact on COL; a traffic chaos indicator that integrates speed, speed variance, and flow is proposed and shows a promising performance; 3) Models based on aggregated data shall be interpreted with caution. Generally, conclusions obtained from such models shall not be generalized to individual vehicles (drivers) without further evidences using high-resolution data and it is dubious to either claim or disclaim speed kills based on aggregated data.
Resumo:
OBJECTIVE: To identify the factors associated with infertility, seeking advice and treatment with fertility hormones and/or in vitro fertilisation (IVF) among a general population of women. METHODS: Participants in the Australian Longitudinal Study on Women's Health aged 28-33 years in 2006 had completed up to four mailed surveys over 10 years (n=9,145). Parsimonious multivariate logistic regression was used to identify the socio-demographic, biological (including reproductive histories), and behavioural factors associated with infertility, advice and hormonal/IVF treatment. RESULTS: For women who had tried to conceive or had been pregnant (n=5,936), 17% reported infertility. Among women with infertility (n=1031), 72% (n=728) sought advice but only 50% (n=356) used hormonal/IVF treatment. Women had higher odds of infertility when: they had never been pregnant (OR=7.2, 95% CI 5.6-9.1) or had a history of miscarriage (OR range=1.5-4.0) than those who had given birth (and never had a miscarriage or termination). CONCLUSION: Only one-third of women with infertility used hormonal and/or IVF treatment. Women with PCOS or endometriosis were the most proactive in having sought advice and used hormonal/IVF treatment. IMPLICATIONS: Raised awareness of age-related declining fertility is important for partnered women aged approximately 30 years to encourage pregnancy during their prime reproductive years and reduce the risk of infertility.
Resumo:
Early detection, clinical management and disease recurrence monitoring are critical areas in cancer treatment in which specific biomarker panels are likely to be very important in each of these key areas. We have previously demonstrated that levels of alpha-2-heremans-schmid-glycoprotein (AHSG), complement component C3 (C3), clusterin (CLI), haptoglobin (HP) and serum amyloid A (SAA) are significantly altered in serum from patients with squamous cell carcinoma of the lung. Here, we report the abundance levels for these proteins in serum samples from patients with advanced breast cancer, colorectal cancer (CRC) and lung cancer compared to healthy controls (age and gender matched) using commercially available enzyme-linked immunosorbent assay kits. Logistic regression (LR) models were fitted to the resulting data, and the classification ability of the proteins was evaluated using receiver-operating characteristic curve and leave-one-out cross-validation (LOOCV). The most accurate individual candidate biomarkers were C3 for breast cancer [area under the curve (AUC) = 0.89, LOOCV = 73%], CLI for CRC (AUC = 0.98, LOOCV = 90%), HP for small cell lung carcinoma (AUC = 0.97, LOOCV = 88%), C3 for lung adenocarcinoma (AUC = 0.94, LOOCV = 89%) and HP for squamous cell carcinoma of the lung (AUC = 0.94, LOOCV = 87%). The best dual combination of biomarkers using LR analysis were found to be AHSG + C3 (AUC = 0.91, LOOCV = 83%) for breast cancer, CLI + HP (AUC = 0.98, LOOCV = 92%) for CRC, C3 + SAA (AUC = 0.97, LOOCV = 91%) for small cell lung carcinoma and HP + SAA for both adenocarcinoma (AUC = 0.98, LOOCV = 96%) and squamous cell carcinoma of the lung (AUC = 0.98, LOOCV = 84%). The high AUC values reported here indicated that these candidate biomarkers have the potential to discriminate accurately between control and cancer groups both individually and in combination with other proteins. Copyright © 2011 UICC.
Resumo:
This study describes the first aid used and clinical outcomes of all patients who presented to the Royal Children's Hospital, Brisbane, Australia in 2005 with an acute burn injury. A retrospective audit was performed with the charts of 459 patients and information concerning burn injury, first-aid treatment, and clinical outcomes was collected. First aid was used on 86.1% of patients, with 8.7% receiving no first aid and unknown treatment in 5.2% of cases. A majority of patients had cold water as first aid (80.2%), however, only 12.1% applied the cold water for the recommended 20 minutes or longer. Recommended first aid (cold water for >or=20 minutes) was associated with significantly reduced reepithelialization time for children with contact injuries (P=.011). Superficial depth burns were significantly more likely to be associated with the use of recommended first aid (P=.03). Suboptimal treatment was more common for children younger than 3.5 years (P<.001) and for children with friction burns. This report is one of the few publications to relate first-aid treatment to clinical outcomes. Some positive clinical outcomes were associated with recommended first-aid use; however, wound outcomes were more strongly associated with burn depth and mechanism of injury. There is also a need for more public awareness of recommended first-aid treatment.
Resumo:
Tobacco smoking, alcohol drinking, and occupational exposures to polycyclic aromatic hydrocarbons are the major proven risk factors for human head and neck squamous-cell cancer (HNSCC). Major research focus on gene-environment interactions concerning HNSCC has been on genes encoding enzymes of metabolism for tobacco smoke constituents and repair enzymes. To investigate the role of genetically determined individual predispositions in enzymes of xenobiotic metabolism and in repair enzymes under the exogenous risk factor tobacco smoke in the carcinogenesis of HNSCC, we conducted a case-control study on 312 cases and 300 noncancer controls. We focused on the impact of 22 sequence variations in CYP1A1, CYP1B1, CYP2E1, ERCC2/XPD, GSTM1, GSTP1, GSTT1, NAT2, NQO1, and XRCC1. To assess relevant main and interactive effects of polymorphic genes on the susceptibility to HNSCC we used statistical models such as logic regression and a Bayesian version of logic regression. In subgroup analysis of nonsmokers, main effects in ERCC2 (Lys751Gln) C/C genotype and combined ERCC2 (Arg156Arg) C/A and A/A genotypes were predominant. When stratifying for smokers, the data revealed main effects on combined CYP1B1 (Leu432Val) C/G and G/G genotypes, followed by CYP1B1 (Leu432Val) G/G genotype and CYP2E1 (-70G>T) G/T genotype. When fitting logistic regression models including relevant main effects and interactions in smokers, we found relevant associations of CYP1B1 (Leu432Val) C/G genotype and CYP2E1 (-70G>T) G/T genotype (OR, 10.84; 95% CI, 1.64-71.53) as well as CYP1B1 (Leu432Val) G/G genotype and GSTM1 null/null genotype (OR, 11.79; 95% CI, 2.18-63.77) with HNSCC. The findings underline the relevance of genotypes of polymorphic CYP1B1 combined with exposures to tobacco smoke.
Resumo:
Meta-analysis is a method to obtain a weighted average of results from various studies. In addition to pooling effect sizes, meta-analysis can also be used to estimate disease frequencies, such as incidence and prevalence. In this article we present methods for the meta-analysis of prevalence. We discuss the logit and double arcsine transformations to stabilise the variance. We note the special situation of multiple category prevalence, and propose solutions to the problems that arise. We describe the implementation of these methods in the MetaXL software, and present a simulation study and the example of multiple sclerosis from the Global Burden of Disease 2010 project. We conclude that the double arcsine transformation is preferred over the logit, and that the MetaXL implementation of multiple category prevalence is an improvement in the methodology of the meta-analysis of prevalence.
Resumo:
We present a systematic, practical approach to developing risk prediction systems, suitable for use with large databases of medical information. An important part of this approach is a novel feature selection algorithm which uses the area under the receiver operating characteristic (ROC) curve to measure the expected discriminative power of different sets of predictor variables. We describe this algorithm and use it to select variables to predict risk of a specific adverse pregnancy outcome: failure to progress in labour. Neural network, logistic regression and hierarchical Bayesian risk prediction models are constructed, all of which achieve close to the limit of performance attainable on this prediction task. We show that better prediction performance requires more discriminative clinical information rather than improved modelling techniques. It is also shown that better diagnostic criteria in clinical records would greatly assist the development of systems to predict risk in pregnancy. We present a systematic, practical approach to developing risk prediction systems, suitable for use with large databases of medical information. An important part of this approach is a novel feature selection algorithm which uses the area under the receiver operating characteristic (ROC) curve to measure the expected discriminative power of different sets of predictor variables. We describe this algorithm and use it to select variables to predict risk of a specific adverse pregnancy outcome: failure to progress in labour. Neural network, logistic regression and hierarchical Bayesian risk prediction models are constructed, all of which achieve close to the limit of performance attainable on this prediction task. We show that better prediction performance requires more discriminative clinical information rather than improved modelling techniques. It is also shown that better diagnostic criteria in clinical records would greatly assist the development of systems to predict risk in pregnancy.
Resumo:
Objective: To determine the influence of HLA-B27 homozygosity and HLA-DRB1 alleles in the susceptibility to, and severity of, ankylosing spondylitis in a Finnish population. Methods: 673 individuals from 261 families with ankylosing spondylitis were genotyped for HLA-DRB1 alleles and HLA-B27 heterozygosity/ homozygosity. The frequencies of HLA-B27 homozygotes in probands from these families were compared with the expected number of HLA-B27 homozygotes in controls under Hardy-Weinberg equilibrium (HWE). The effect of HLA-DRB1 alleles was assessed using a logistic regression procedure conditioned on HLA-B27 and case-control analysis. Results: HLA-B27 was detected in 93% of cases of ankylosing spondylitis. An overrepresentation of HLA-B27 homozygotes was noted in ankylosing spondylitis (11%) compared with the expected number of HLA-B27 homozygotes under HWE (4%) (odds ratio (OR) = 3.3 (95% confidence interval, 1.6 to 6.8), p = 0.002). HLA-B27 homozygosity was marginally associated with reduced BASDAI (HLA-B27 homozygotes, 4.5 (1.6); HLA-B27 heterozygotes, 5.4 (1.8) (mean (SD)), p = 0.05). Acute anterior uveitis (AAU) was present in significantly more HLA-B27 positive cases (50%) than HLA-B27 negative cases (16%) (OR = 5.4 (1.7 to 17), p<0.004). HLA-B27 positive cases had a lower average age of symptom onset (26.7 (8.0) years) compared with HLA-B27 negative cases (35.7 (11.2) years) (p<0.0001). Conclusions: HLA-627 homozygosity is associated with a moderately increased risk of ankylosing spondylitis compared with HLA-β27 heterozygosity. HLA-B27 positive cases had an earlier age of onset of ankylosing spondylitis than HLA-B27 negative cases and were more likely to develop AAU. HLA-DRB1 alleles may influence the age of symptom onset of ankylosing spondylitis.
Resumo:
We examined the role of common genetic variation in schizophrenia in a genome-wide association study of substantial size: a stage 1 discovery sample of 21,856 individuals of European ancestry and a stage 2 replication sample of 29,839 independent subjects. The combined stage 1 and 2 analysis yielded genome-wide significant associations with schizophrenia for seven loci, five of which are new (1p21.3, 2q32.3, 8p23.2, 8q21.3 and 10q24.32-q24.33) and two of which have been previously implicated (6p21.32-p22.1 and 18q21.2). The strongest new finding (P = 1.6 × 10 -11) was with rs1625579 within an intron of a putative primary transcript for MIR137 (microRNA 137), a known regulator of neuronal development. Four other schizophrenia loci achieving genome-wide significance contain predicted targets of MIR137, suggesting MIR137-mediated dysregulation as a previously unknown etiologic mechanism in schizophrenia. In a joint analysis with a bipolar disorder sample (16,374 affected individuals and 14,044 controls), three loci reached genome-wide significance: CACNA1C (rs4765905, P = 7.0 × 10 -9), ANK3 (rs10994359, P = 2.5 × 10 -8) and the ITIH3-ITIH4 region (rs2239547, P = 7.8 × 10 -9).
Resumo:
A strong association between ERAP1 and ankylosing spondylitis (AS) was recently identified by the Wellcome Trust Case Control Consortium and the Australo-Anglo-American Spondylitis Consortium (WTCCC-TASC) study. ERAP1 is highly polymorphic with strong linkage disequilibrium evident across the gene. We therefore conducted a series of experiments to try to identify the primary genetic association(s) with ERAP1. We replicated the original associations in an independent set of 730 patients and 1021 controls, resequenced ERAP1 to define the full extent of coding polymorphisms and tested all variants in additional association studies. The genetic association with ERAP1 was independently confirmed; the strongest association was with rs30187 in the replication set (P = 3.4 × 103). When the data were combined with the original WTCCC-TASC study the strongest association was with rs27044 (P = 1.1 × 10-9). We identified 33 sequence polymorphisms in ERAP1, including three novel and eight known non-synonymous polymorphisms. We report several new associations between AS and polymorphisms distributed across ERAP1 from the extended case-control study, the most significant of which was with rs27434 (P = 4.7 × 10-7). Regression analysis failed to identify a primary association clearly; we therefore used data from HapMap to impute genotypes for an additional 205 non-coding SNPs located within and adjacent to ERAP1. A number of highly significant associations (P < 5 × 10-9) were identified in regulatory sequences which are good candidates for causing susceptibility to AS, possibly by regulating ERAP1 expression. © 2009 The Author(s).
Resumo:
SNPs discovered by genome-wide association studies (GWASs) account for only a small fraction of the genetic variation of complex traits in human populations. Where is the remaining heritability? We estimated the proportion of variance for human height explained by 294,831 SNPs genotyped on 3,925 unrelated individuals using a linear model analysis, and validated the estimation method with simulations based on the observed genotype data. We show that 45% of variance can be explained by considering all SNPs simultaneously. Thus, most of the heritability is not missing but has not previously been detected because the individual effects are too small to pass stringent significance tests. We provide evidence that the remaining heritability is due to incomplete linkage disequilibrium between causal variants and genotyped SNPs, exacerbated by causal variants having lower minor allele frequency than the SNPs explored to date.
Resumo:
Objective To examine the combined effects of physical activity and weight status on blood pressure (BP) in preschool-aged children. Study design The sample included 733 preschool-aged children (49% female). Physical activity was objectively assessed on 7 consecutive days by accelerometry. Children were categorized as sufficiently active if they met the recommendation of at least 60 minutes daily of moderate-to-vigorous physical activity (MVPA). Body mass index was used to categorize children as nonoverweight or overweight/obese, according to the International Obesity Task Force benchmarks. BP was measured using an automated BP monitor and categorized as elevated or normal using BP percentile-based cut-points for age, sex, and height. Results The prevalence of elevated systolic BP (SBP) and diastolic BP was 7.7% and 3.0%, respectively. The prevalence of overweight/obese was 32%, and about 15% of children did not accomplish the recommended 60 minutes of daily MVPA. After controlling for age and sex, overweight/obese children who did not meet the daily MVPA recommendation were 3 times more likely (OR 3.8; CI 1.6-8.6) to have elevated SBP than nonoverweight children who met the daily MVPA recommendation. Conclusions Overweight or obese preschool-aged children with insufficient levels of MVPA are at significantly greater risk for elevated SBP than their nonoverweight and sufficiently active counterparts.
Resumo:
The aim of this study was to identify and describe the types of errors in clinical reasoning that contribute to poor diagnostic performance at different levels of medical training and experience. Three cohorts of subjects, second- and fourth- (final) year medical students and a group of general practitioners, completed a set of clinical reasoning problems. The responses of those whose scores fell below the 25th centile were analysed to establish the stage of the clinical reasoning process - identification of relevant information, interpretation or hypothesis generation - at which most errors occurred and whether this was dependent on problem difficulty and level of medical experience. Results indicate that hypothesis errors decrease as expertise increases but that identification and interpretation errors increase. This may be due to inappropriate use of pattern recognition or to failure of the knowledge base. Furthermore, although hypothesis errors increased in line with problem difficulty, identification and interpretation errors decreased. A possible explanation is that as problem difficulty increases, subjects at all levels of expertise are less able to differentiate between relevant and irrelevant clinical features and so give equal consideration to all information contained within a case. It is concluded that the development of clinical reasoning in medical students throughout the course of their pre-clinical and clinical education may be enhanced by both an analysis of the clinical reasoning process and a specific focus on each of the stages at which errors commonly occur.
Resumo:
Numerous expert elicitation methods have been suggested for generalised linear models (GLMs). This paper compares three relatively new approaches to eliciting expert knowledge in a form suitable for Bayesian logistic regression. These methods were trialled on two experts in order to model the habitat suitability of the threatened Australian brush-tailed rock-wallaby (Petrogale penicillata). The first elicitation approach is a geographically assisted indirect predictive method with a geographic information system (GIS) interface. The second approach is a predictive indirect method which uses an interactive graphical tool. The third method uses a questionnaire to elicit expert knowledge directly about the impact of a habitat variable on the response. Two variables (slope and aspect) are used to examine prior and posterior distributions of the three methods. The results indicate that there are some similarities and dissimilarities between the expert informed priors of the two experts formulated from the different approaches. The choice of elicitation method depends on the statistical knowledge of the expert, their mapping skills, time constraints, accessibility to experts and funding available. This trial reveals that expert knowledge can be important when modelling rare event data, such as threatened species, because experts can provide additional information that may not be represented in the dataset. However care must be taken with the way in which this information is elicited and formulated.