279 resultados para Locally finite groups
em Queensland University of Technology - ePrints Archive
Resumo:
Osteoporosis is a disease characterized by low bone mass and micro-architectural deterioration of bone tissue, with a consequent increase in bone fragility and susceptibility to fracture. Osteoporosis affects over 200 million people worldwide, with an estimated 1.5 million fractures annually in the United States alone, and with attendant costs exceeding $10 billion dollars per annum. Osteoporosis reduces bone density through a series of structural changes to the honeycomb-like trabecular bone structure (micro-structure). The reduced bone density, coupled with the microstructural changes, results in significant loss of bone strength and increased fracture risk. Vertebral compression fractures are the most common type of osteoporotic fracture and are associated with pain, increased thoracic curvature, reduced mobility, and difficulty with self care. Surgical interventions, such as kyphoplasty or vertebroplasty, are used to treat osteoporotic vertebral fractures by restoring vertebral stability and alleviating pain. These minimally invasive procedures involve injecting bone cement into the fractured vertebrae. The techniques are still relatively new and while initial results are promising, with the procedures relieving pain in 70-95% of cases, medium-term investigations are now indicating an increased risk of adjacent level fracture following the procedure. With the aging population, understanding and treatment of osteoporosis is an increasingly important public health issue in developed Western countries. The aim of this study was to investigate the biomechanics of spinal osteoporosis and osteoporotic vertebral compression fractures by developing multi-scale computational, Finite Element (FE) models of both healthy and osteoporotic vertebral bodies. The multi-scale approach included the overall vertebral body anatomy, as well as a detailed representation of the internal trabecular microstructure. This novel, multi-scale approach overcame limitations of previous investigations by allowing simultaneous investigation of the mechanics of the trabecular micro-structure as well as overall vertebral body mechanics. The models were used to simulate the progression of osteoporosis, the effect of different loading conditions on vertebral strength and stiffness, and the effects of vertebroplasty on vertebral and trabecular mechanics. The model development process began with the development of an individual trabecular strut model using 3D beam elements, which was used as the building block for lattice-type, structural trabecular bone models, which were in turn incorporated into the vertebral body models. At each stage of model development, model predictions were compared to analytical solutions and in-vitro data from existing literature. The incremental process provided confidence in the predictions of each model before incorporation into the overall vertebral body model. The trabecular bone model, vertebral body model and vertebroplasty models were validated against in-vitro data from a series of compression tests performed using human cadaveric vertebral bodies. Firstly, trabecular bone samples were acquired and morphological parameters for each sample were measured using high resolution micro-computed tomography (CT). Apparent mechanical properties for each sample were then determined using uni-axial compression tests. Bone tissue properties were inversely determined using voxel-based FE models based on the micro-CT data. Specimen specific trabecular bone models were developed and the predicted apparent stiffness and strength were compared to the experimentally measured apparent stiffness and strength of the corresponding specimen. Following the trabecular specimen tests, a series of 12 whole cadaveric vertebrae were then divided into treated and non-treated groups and vertebroplasty performed on the specimens of the treated group. The vertebrae in both groups underwent clinical-CT scanning and destructive uniaxial compression testing. Specimen specific FE vertebral body models were developed and the predicted mechanical response compared to the experimentally measured responses. The validation process demonstrated that the multi-scale FE models comprising a lattice network of beam elements were able to accurately capture the failure mechanics of trabecular bone; and a trabecular core represented with beam elements enclosed in a layer of shell elements to represent the cortical shell was able to adequately represent the failure mechanics of intact vertebral bodies with varying degrees of osteoporosis. Following model development and validation, the models were used to investigate the effects of progressive osteoporosis on vertebral body mechanics and trabecular bone mechanics. These simulations showed that overall failure of the osteoporotic vertebral body is initiated by failure of the trabecular core, and the failure mechanism of the trabeculae varies with the progression of osteoporosis; from tissue yield in healthy trabecular bone, to failure due to instability (buckling) in osteoporotic bone with its thinner trabecular struts. The mechanical response of the vertebral body under load is highly dependent on the ability of the endplates to deform to transmit the load to the underlying trabecular bone. The ability of the endplate to evenly transfer the load through the core diminishes with osteoporosis. Investigation into the effect of different loading conditions on the vertebral body found that, because the trabecular bone structural changes which occur in osteoporosis result in a structure that is highly aligned with the loading direction, the vertebral body is consequently less able to withstand non-uniform loading states such as occurs in forward flexion. Changes in vertebral body loading due to disc degeneration were simulated, but proved to have little effect on osteoporotic vertebra mechanics. Conversely, differences in vertebral body loading between simulated invivo (uniform endplate pressure) and in-vitro conditions (where the vertebral endplates are rigidly cemented) had a dramatic effect on the predicted vertebral mechanics. This investigation suggested that in-vitro loading using bone cement potting of both endplates has major limitations in its ability to represent vertebral body mechanics in-vivo. And lastly, FE investigation into the biomechanical effect of vertebroplasty was performed. The results of this investigation demonstrated that the effect of vertebroplasty on overall vertebra mechanics is strongly governed by the cement distribution achieved within the trabecular core. In agreement with a recent study, the models predicted that vertebroplasty cement distributions which do not form one continuous mass which contacts both endplates have little effect on vertebral body stiffness or strength. In summary, this work presents the development of a novel, multi-scale Finite Element model of the osteoporotic vertebral body, which provides a powerful new tool for investigating the mechanics of osteoporotic vertebral compression fractures at the trabecular bone micro-structural level, and at the vertebral body level.
Resumo:
A point interpolation method with locally smoothed strain field (PIM-LS2) is developed for mechanics problems using a triangular background mesh. In the PIM-LS2, the strain within each sub-cell of a nodal domain is assumed to be the average strain over the adjacent sub-cells of the neighboring element sharing the same field node. We prove theoretically that the energy norm of the smoothed strain field in PIM-LS2 is equivalent to that of the compatible strain field, and then prove that the solution of the PIM- LS2 converges to the exact solution of the original strong form. Furthermore, the softening effects of PIM-LS2 to system and the effects of the number of sub-cells that participated in the smoothing operation on the convergence of PIM-LS2 are investigated. Intensive numerical studies verify the convergence, softening effects and bound properties of the PIM-LS2, and show that the very ‘‘tight’’ lower and upper bound solutions can be obtained using PIM-LS2.
Locally oriented crime prevention and the “partnership approach” : politics, practices and prospects
Resumo:
Why have multi-agency or "partnership" approaches to crime prevention and community safety been reported internationally with unfavorable results? Can groups and individuals from disparate government and non-government sectors work together to reduce or prevent crime? This article will address these and other questions by using developments in Belgium as its case study. In 1992, Belgium launched its "safety and crime prevention contracts", a series of locally based crime prevention initiatives which have attempted to contract federal, regional and local governments to a range of social and police oriented crime prevention endeavors. Traces the development of the Belgian crime prevention contracts and examines the difficulties experienced with "multi-agency crime prevention" and suggests that much of the political rhetoric in Belgium calling for local, community and intersectorial "partnerships" has, like several other countries including England and Wales, Canada, Australia and New Zealand, lacked clear practical expression. However, some promising initiatives indicate that this prevention approach may be capable of producing effective crime prevention and community safety outcomes. Further research is needed to describe these initiatives and analyze the conditions under which they are developed.
Resumo:
We study the natural problem of secure n-party computation (in the computationally unbounded attack model) of circuits over an arbitrary finite non-Abelian group (G,⋅), which we call G-circuits. Besides its intrinsic interest, this problem is also motivating by a completeness result of Barrington, stating that such protocols can be applied for general secure computation of arbitrary functions. For flexibility, we are interested in protocols which only require black-box access to the group G (i.e. the only computations performed by players in the protocol are a group operation, a group inverse, or sampling a uniformly random group element). Our investigations focus on the passive adversarial model, where up to t of the n participating parties are corrupted.
Resumo:
Most previous work on unconditionally secure multiparty computation has focused on computing over a finite field (or ring). Multiparty computation over other algebraic structures has not received much attention, but is an interesting topic whose study may provide new and improved tools for certain applications. At CRYPTO 2007, Desmedt et al introduced a construction for a passive-secure multiparty multiplication protocol for black-box groups, reducing it to a certain graph coloring problem, leaving as an open problem to achieve security against active attacks. We present the first n-party protocol for unconditionally secure multiparty computation over a black-box group which is secure under an active attack model, tolerating any adversary structure Δ satisfying the Q 3 property (in which no union of three subsets from Δ covers the whole player set), which is known to be necessary for achieving security in the active setting. Our protocol uses Maurer’s Verifiable Secret Sharing (VSS) but preserves the essential simplicity of the graph-based approach of Desmedt et al, which avoids each shareholder having to rerun the full VSS protocol after each local computation. A corollary of our result is a new active-secure protocol for general multiparty computation of an arbitrary Boolean circuit.
Resumo:
We study the natural problem of secure n-party computation (in the passive, computationally unbounded attack model) of the n-product function f G (x 1,...,x n ) = x 1 ·x 2 ⋯ x n in an arbitrary finite group (G,·), where the input of party P i is x i ∈ G for i = 1,...,n. For flexibility, we are interested in protocols for f G which require only black-box access to the group G (i.e. the only computations performed by players in the protocol are a group operation, a group inverse, or sampling a uniformly random group element). Our results are as follows. First, on the negative side, we show that if (G,·) is non-abelian and n ≥ 4, then no ⌈n/2⌉-private protocol for computing f G exists. Second, on the positive side, we initiate an approach for construction of black-box protocols for f G based on k-of-k threshold secret sharing schemes, which are efficiently implementable over any black-box group G. We reduce the problem of constructing such protocols to a combinatorial colouring problem in planar graphs. We then give two constructions for such graph colourings. Our first colouring construction gives a protocol with optimal collusion resistance t < n/2, but has exponential communication complexity O(n*2t+1^2/t) group elements (this construction easily extends to general adversary structures). Our second probabilistic colouring construction gives a protocol with (close to optimal) collusion resistance t < n/μ for a graph-related constant μ ≤ 2.948, and has efficient communication complexity O(n*t^2) group elements. Furthermore, we believe that our results can be improved by further study of the associated combinatorial problems.
Resumo:
This paper evaluates the operational activities of Chinese hydroelectric power companies over the period 2000-2010 using a finite mixture model that controls for unobserved heterogeneity. In so doing, a stochastic frontier latent class model, which allows for the existence of different technologies, is adopted to estimate cost frontiers. This procedure not only enables us to identify different groups among the hydro-power companies analysed, but also permits the analysis of their cost efficiency. The main result is that three groups are identified in the sample, each equipped with different technologies, suggesting that distinct business strategies need to be adapted to the characteristics of China's hydro-power companies. Some managerial implications are developed. © 2012 Elsevier B.V.
Resumo:
BACKGROUND: Dengue has been a major public health concern in Australia since it re-emerged in Queensland in 1992-1993. We explored spatio-temporal characteristics of locally-acquired dengue cases in northern tropical Queensland, Australia during the period 1993-2012. METHODS: Locally-acquired notified cases of dengue were collected for northern tropical Queensland from 1993 to 2012. Descriptive spatial and temporal analyses were conducted using geographic information system tools and geostatistical techniques. RESULTS: 2,398 locally-acquired dengue cases were recorded in northern tropical Queensland during the study period. The areas affected by the dengue cases exhibited spatial and temporal variation over the study period. Notified cases of dengue occurred more frequently in autumn. Mapping of dengue by statistical local areas (census units) reveals the presence of substantial spatio-temporal variation over time and place. Statistically significant differences in dengue incidence rates among males and females (with more cases in females) (χ(2) = 15.17, d.f. = 1, p<0.01). Differences were observed among age groups, but these were not statistically significant. There was a significant positive spatial autocorrelation of dengue incidence for the four sub-periods, with the Moran's I statistic ranging from 0.011 to 0.463 (p<0.01). Semi-variogram analysis and smoothed maps created from interpolation techniques indicate that the pattern of spatial autocorrelation was not homogeneous across the northern Queensland. CONCLUSIONS: Tropical areas are potential high-risk areas for mosquito-borne diseases such as dengue. This study demonstrated that the locally-acquired dengue cases have exhibited a spatial and temporal variation over the past twenty years in northern tropical Queensland, Australia. Therefore, this study provides an impetus for further investigation of clusters and risk factors in these high-risk areas.
Resumo:
This new volume, Exploring with Grammar in the Primary Years (Exley, Kevin & Mantei, 2014), follows on from Playing with Grammar in the Early Years (Exley & Kervin, 2013). We extend our thanks to the ALEA membership for their take up of the first volume and the vibrant conversations around our first attempt at developing a pedagogy for the teaching of grammar in the early years. Your engagement at locally held ALEA events has motivated us to complete this second volume and reassert our interest in the pursuit of socially-just outcomes in the primary years. As noted in Exley and Kervin (2013), we believe that mastering a range of literacy competences includes not only the technical skills for learning, but also the resources for viewing and constructing the world (Freire and Macdeo, 1987). Rather than seeing knowledge about language as the accumulation of technical skills alone, the viewpoint to which we subscribe treats knowledge about language as a dialectic that evolves from, is situated in, and contributes to active participation within a social arena (Halliday, 1978). We acknowledge that to explore is to engage in processes of discovery as we look closely and examine the opportunities before us. As such, we draw on Janks’ (2000; 2014) critical literacy theory to underpin many of the learning experiences in this text. Janks (2000) argues that effective participation in society requires knowledge about how the power of language promotes views, beliefs and values of certain groups to the exclusion of others. Powerful language users can identify not only how readers are positioned by these views, but also the ways these views are conveyed through the design of the text, that is, the combination of vocabulary, syntax, image, movement and sound. Similarly, powerful designers of texts can make careful modal choices in written and visual design to promote certain perspectives that position readers and viewers in new ways to consider more diverse points of view. As the title of our text suggests, our activities are designed to support learners in exploring the design of texts to achieve certain purposes and to consider the potential for the sharing of their own views through text production. In Exploring with Grammar in the Primary Years, we focus on the Year 3 to Year 6 grouping in line with the Australian Curriculum, Assessment and Reporting Authority’s (hereafter ACARA) advice on the ‘nature of learners’ (ACARA, 2014). Our goal in this publication is to provide a range of highly practical strategies for scaffolding students’ learning through some of the Content Descriptions from the Australian Curriculum: English Version 7.2, hereafter AC:E (ACARA, 2014). We continue to express our belief in the power of using whole texts from a range of authentic sources including high quality children’s literature, the internet, and examples of community-based texts to expose students to the richness of language. Taking time to look at language patterns within actual texts is a pathway to ‘…capture interest, stir the imagination and absorb the [child]’ into the world of language and literacy (Saxby, 1993, p. 55). It is our intention to be more overt this time and send a stronger message that our learning experiences are simply ‘sample’ activities rather than a teachers’ workbook or a program of study to be followed. We’re hoping that teachers and students will continue to explore their bookshelves, the internet and their community for texts that provide powerful opportunities to engage with language-based learning experiences. In the following three sections, we have tried to remain faithful to our interpretation of the AC:E Content Descriptions without giving an exhaustive explanation of the grammatical terms. This recently released curriculum offers a new theoretical approach to building students’ knowledge about language. The AC:E uses selected traditional terms through an approach developed in systemic functional linguistics (see Halliday and Matthiessen, 2004) to highlight the dynamic forms and functions of multimodal language in texts. For example, the following statement, taken from the ‘Language: Knowing about the English language’ strand states: English uses standard grammatical terminology within a contextual framework, in which language choices are seen to vary according to the topics at hand, the nature and proximity of the relationships between the language users, and the modalities or channels of communication available (ACARA, 2014). Put simply, traditional grammar terms are used within a functional framework made up of field, tenor, and mode. An understanding of genre is noted with the reference to a ‘contextual framework’. The ‘topics at hand’ concern the field or subject matter of the text. The ‘relationships between the language users’ is a description of tenor. There is reference to ‘modalities’, such as spoken, written or visual text. We posit that this innovative approach is necessary for working with contemporary multimodal and cross-cultural texts (see Exley & Mills, 2012). Other excellent tomes, such as Derewianka (2011), Humphrey, Droga and Feez (2012), and Rossbridge and Rushton (2011) provide more comprehensive explanations of this unique metalanguage, as does the AC:E Glossary. We’ve reproduced some of the AC:E Glossary at the end of this publication. We’ve also kept the same layout for our learning experiences, ensuring that our teacher notes are not only succinct but also prudent in their placement. Each learning experience is connected to a Content Description from the AC:E and contains an experience with an identified purpose, suggested resource text and a possible sequence for the experience that always commences with an orientation to text followed by an examination of a particular grammatical resource. Our plans allow for focused discussion, shared exploration and opportunities to revisit the same text for the purpose of enhancing meaning making. Some learning experiences finish with deconstruction of a stimulus text while others invite students to engage in the design of new texts. We encourage you to look for opportunities in your own classrooms to move from text deconstruction to text design. In this way, students can express not only their emerging grammatical understandings, but also the ways they might position readers or viewers through the creation of their own texts. We expect that each of these learning experiences will vary in the time taken. Some may indeed take a couple if not a few teaching episodes to work through, especially if students are meeting a concept or a pedagogical strategy for the first time. We hope you use as much, or as little, of each experience as is needed for your students. We do not want the teaching of grammar to slip into a crisis of irrelevance or to be seen as a series of worksheet drills with finite answers. We firmly believe that strategies for effective deconstruction and design practice, however, have much portability. We three are very keen to hear from teachers who are adopting and adapting these learning experiences in their classrooms. Please email us on b.exley@qut.edu.au, lkervin@uow.edu.au or jessicam@ouw.edu.au. We’d love to continue the conversation with you over time. Beryl Exley, Lisa Kervin & Jessica Mantei
Resumo:
Objectives: There is considerable evidence that patients with carotid artery stenosis treated immediately after the ischaemic cerebrovascular event have a better clinical outcome than those who have delayed treatment. Biomechanical assessment of carotid plaques using high-resolution MRI can help examine the relationship between the timing of carotid plaque symptomology and maximum simulated plaque stress concentration. Methods: Fifty patients underwent high-resolution multisequence in vivo MRI of their carotid arteries. Patients with acute symptoms (n=25) underwent MRI within 72 h of the onset of ischaemic cerebrovascular symptoms, whereas recently symptomatic patients (n=25) underwent MRI from 2 to 6 weeks after the onset of symptoms. Stress analysis was performed based on the geometry derived from in vivo MRI of the symptomatic carotid artery at the point of maximum stenosis. The peak stresses within the plaques of the two groups were compared. Results: Patient demographics were comparable for both groups. All the patients in the recently symptomatic group had severe carotid stenosis in contrast to patients with acute symptoms who had predominantly mild to moderate carotid stenosis. The simulated maximum stresses in patients with acute symptoms was significantly higher than in recently symptomatic patients (median (IQR): 313310 4 dynes/cm 2 (295 to 382) vs 2523104 dynes/cm 2 (236 to 311), p=0.02). Conclusions: Patients have extremely unstable, high-risk plaques, with high stresses, immediately after an acute cerebrovascular event, even at lower degrees of carotid stenoses. Biomechanical stress analysis may help us refine our risk-stratification criteria for the management of patients with carotid artery disease in future.
Resumo:
An unstructured mesh �nite volume discretisation method for simulating di�usion in anisotropic media in two-dimensional space is discussed. This technique is considered as an extension of the fully implicit hybrid control-volume �nite-element method and it retains the local continuity of the ux at the control volume faces. A least squares function recon- struction technique together with a new ux decomposition strategy is used to obtain an accurate ux approximation at the control volume face, ensuring that the overall accuracy of the spatial discretisation maintains second order. This paper highlights that the new technique coincides with the traditional shape function technique when the correction term is neglected and that it signi�cantly increases the accuracy of the previous linear scheme on coarse meshes when applied to media that exhibit very strong to extreme anisotropy ratios. It is concluded that the method can be used on both regular and irregular meshes, and appears independent of the mesh quality.