67 resultados para Linear mixed models
em Queensland University of Technology - ePrints Archive
Resumo:
Statistical methods are often used to analyse commercial catch and effort data to provide standardised fishing effort and/or a relative index of fish abundance for input into stock assessment models. Achieving reliable results has proved difficult in Australia's Northern Prawn Fishery (NPF), due to a combination of such factors as the biological characteristics of the animals, some aspects of the fleet dynamics, and the changes in fishing technology. For this set of data, we compared four modelling approaches (linear models, mixed models, generalised estimating equations, and generalised linear models) with respect to the outcomes of the standardised fishing effort or the relative index of abundance. We also varied the number and form of vessel covariates in the models. Within a subset of data from this fishery, modelling correlation structures did not alter the conclusions from simpler statistical models. The random-effects models also yielded similar results. This is because the estimators are all consistent even if the correlation structure is mis-specified, and the data set is very large. However, the standard errors from different models differed, suggesting that different methods have different statistical efficiency. We suggest that there is value in modelling the variance function and the correlation structure, to make valid and efficient statistical inferences and gain insight into the data. We found that fishing power was separable from the indices of prawn abundance only when we offset the impact of vessel characteristics at assumed values from external sources. This may be due to the large degree of confounding within the data, and the extreme temporal changes in certain aspects of individual vessels, the fleet and the fleet dynamics.
Resumo:
Driving on motorways has largely been reduced to a lane-keeping task with cruise control. Rapidly, drivers are likely to get bored with such a task and take their attention away from the road. This is of concern in terms of road safety – particularly for professional drivers - since inattention has been identified as one of the main contributing factors to road crashes and is estimated to be involved in 20 to 30% of these crashes. Furthermore, drivers are not aware that their vigilance level has decreased and that their driving performance is impaired. Intelligent Transportation System (ITS) intervention can be used as a countermeasure against vigilance decrement. This paper aims to identify a variety of metrics impacted during monotonous driving - ranging from vehicle data to physiological variables - and relate them to two monotonous factors namely the monotony of the road design (straightness) and the monotony of the environment (landscape, signage, traffic). Data are collected in a driving simulator instrumented with an eye tracking system, a heart rate monitor and an electrodermal activity device (N=25 participants). The two monotonous factors are varied (high and low) leading to the use of four different driving scenarios (40 minutes each). We show with Generalised Linear Mixed Models that driver performance decreases faster when the road is monotonous. We also highlight that road monotony impairs a variety of driving performance and vigilance measures, ranging from speed, lateral position of the vehicle to physiological measurements such as heart rate variability, blink frequency and electrodermal activity. This study informs road designers of the importance of having a varied road environment. It also provides a range of metrics that can be used to detect in real-time the impairment of driving performance on monotonous roads. Such knowledge could result in the development of an in-vehicle device warning drivers at early signs of driving performance impairment on monotonous roads.
Resumo:
Vigilance declines when exposed to highly predictable and uneventful tasks. Monotonous tasks provide little cognitive and motor stimulation and contribute to human errors. This paper aims to model and detect vigilance decline in real time through participant’s reaction times during a monotonous task. A lab-based experiment adapting the Sustained Attention to Response Task (SART) is conducted to quantify the effect of monotony on overall performance. Then relevant parameters are used to build a model detecting hypovigilance throughout the experiment. The accuracy of different mathematical models are compared to detect in real-time – minute by minute - the lapses in vigilance during the task. We show that monotonous tasks can lead to an average decline in performance of 45%. Furthermore, vigilance modelling enables to detect vigilance decline through reaction times with an accuracy of 72% and a 29% false alarm rate. Bayesian models are identified as a better model to detect lapses in vigilance as compared to Neural Networks and Generalised Linear Mixed Models. This modelling could be used as a framework to detect vigilance decline of any human performing monotonous tasks.
Resumo:
Background Leisure-time physical activity (LTPA) shows promise for reducing the risk of poor mental health in later life, although gender- and age-specific research is required to clarify this association. This study examined the concurrent and prospective relationships between both LTPA and walking with mental health in older women. Methods Community-dwelling women aged 73–78 years completed mailed surveys in 1999, 2002 and 2005 for the Australian Longitudinal Study on Women's Health. Respondents reported their weekly minutes of walking, moderate LTPA and vigorous LTPA. Mental health was defined as the number of depression and anxiety symptoms, as assessed with the Goldberg Anxiety and Depression Scale (GADS). Multivariable linear mixed models, adjusted for socio-demographic and health-related variables, were used to examine associations between five levels of LTPA (none, very low, low, intermediate and high) and GADS scores. For women who reported walking as their only LTPA, associations between walking and GADS scores were also examined. Women who reported depression or anxiety in 1999 were excluded, resulting in data from 6653 women being included in these analyses. Results Inverse dose–response associations were observed between both LTPA and walking with GADS scores in concurrent and prospective models (p<0.001). Even low levels of LTPA and walking were associated with lowered scores. The lowest scores were observed in women reporting high levels of LTPA or walking. Conclusion The results support an inverse dose–response association between both LTPA and walking with mental health, over 3 years in older women without depression or anxiety.
Resumo:
Maternal and infant mortality is a global health issue with a significant social and economic impact. Each year, over half a million women worldwide die due to complications related to pregnancy or childbirth, four million infants die in the first 28 days of life, and eight million infants die in the first year. Ninety-nine percent of maternal and infant deaths are in developing countries. Reducing maternal and infant mortality is among the key international development goals. In China, the national maternal mortality ratio and infant mortality rate were reduced greatly in the past two decades, yet a large discrepancy remains between urban and rural areas. To address this problem, a large-scale Safe Motherhood Programme was initiated in 2000. The programme was implemented in Guangxi in 2003. Interventions in the programme included both demand-side and supply side-interventions focusing on increasing health service use and improving birth outcomes. Little is known about the effects and economic outcomes of the Safe Motherhood Programme in Guangxi, although it has been implemented for seven years. The aim of this research is to estimate the effectiveness and cost-effectiveness of the interventions in the Safe Motherhood Programme in Guangxi, China. The objectives of this research include: 1. To evaluate whether the changes of health service use and birth outcomes are associated with the interventions in the Safe Motherhood Programme. 2. To estimate the cost-effectiveness of the interventions in the Safe Motherhood Programme and quantify the uncertainty surrounding the decision. 3. To assess the expected value of perfect information associated with both the whole decision and individual parameters, and interpret the findings to inform priority setting in further research and policy making in this area. A quasi-experimental study design was used in this research to assess the effectiveness of the programme in increasing health service use and improving birth outcomes. The study subjects were 51 intervention counties and 30 control counties. Data on the health service use, birth outcomes and socio-economic factors from 2001 to 2007 were collected from the programme database and statistical yearbooks. Based on the profile plots of the data, general linear mixed models were used to evaluate the effectiveness of the programme while controlling for the effects of baseline levels of the response variables, change of socio-economic factors over time and correlations among repeated measurements from the same county. Redundant multicollinear variables were deleted from the mixed model using the results of the multicollinearity diagnoses. For each response variable, the best covariance structure was selected from 15 alternatives according to the fit statistics including Akaike information criterion, Finite-population corrected Akaike information criterion, and Schwarz.s Bayesian information criterion. Residual diagnostics were used to validate the model assumptions. Statistical inferences were made to show the effect of the programme on health service use and birth outcomes. A decision analytic model was developed to evaluate the cost-effectiveness of the programme, quantify the decision uncertainty, and estimate the expected value of perfect information associated with the decision. The model was used to describe the transitions between health states for women and infants and reflect the change of both costs and health benefits associated with implementing the programme. Result gained from the mixed models and other relevant evidence identified were synthesised appropriately to inform the input parameters of the model. Incremental cost-effectiveness ratios of the programme were calculated for the two groups of intervention counties over time. Uncertainty surrounding the parameters was dealt with using probabilistic sensitivity analysis, and uncertainty relating to model assumptions was handled using scenario analysis. Finally the expected value of perfect information for both the whole model and individual parameters in the model were estimated to inform priority setting in further research in this area.The annual change rates of the antenatal care rate and the institutionalised delivery rate were improved significantly in the intervention counties after the programme was implemented. Significant improvements were also found in the annual change rates of the maternal mortality ratio, the infant mortality rate, the incidence rate of neonatal tetanus and the mortality rate of neonatal tetanus in the intervention counties after the implementation of the programme. The annual change rate of the neonatal mortality rate was also improved, although the improvement was only close to statistical significance. The influences of the socio-economic factors on the health service use indicators and birth outcomes were identified. The rural income per capita had a significant positive impact on the health service use indicators, and a significant negative impact on the birth outcomes. The number of beds in healthcare institutions per 1,000 population and the number of rural telephone subscribers per 1,000 were found to be positively significantly related to the institutionalised delivery rate. The length of highway per square kilometre negatively influenced the maternal mortality ratio. The percentage of employed persons in the primary industry had a significant negative impact on the institutionalised delivery rate, and a significant positive impact on the infant mortality rate and neonatal mortality rate. The incremental costs of implementing the programme over the existing practice were US $11.1 million from the societal perspective, and US $13.8 million from the perspective of the Ministry of Health. Overall, 28,711 life years were generated by the programme, producing an overall incremental cost-effectiveness ratio of US $386 from the societal perspective, and US $480 from the perspective of the Ministry of Health, both of which were below the threshold willingness-to-pay ratio of US $675. The expected net monetary benefit generated by the programme was US $8.3 million from the societal perspective, and US $5.5 million from the perspective of the Ministry of Health. The overall probability that the programme was cost-effective was 0.93 and 0.89 from the two perspectives, respectively. The incremental cost-effectiveness ratio of the programme was insensitive to the different estimates of the three parameters relating to the model assumptions. Further research could be conducted to reduce the uncertainty surrounding the decision, in which the upper limit of investment was US $0.6 million from the societal perspective, and US $1.3 million from the perspective of the Ministry of Health. It is also worthwhile to get a more precise estimate of the improvement of infant mortality rate. The population expected value of perfect information for individual parameters associated with this parameter was US $0.99 million from the societal perspective, and US $1.14 million from the perspective of the Ministry of Health. The findings from this study have shown that the interventions in the Safe Motherhood Programme were both effective and cost-effective in increasing health service use and improving birth outcomes in rural areas of Guangxi, China. Therefore, the programme represents a good public health investment and should be adopted and further expanded to an even broader area if possible. This research provides economic evidence to inform efficient decision making in improving maternal and infant health in developing countries.
Resumo:
Background Although physical activity is associated with health-related quality of life (HRQL), the nature of the dose-response relationship remains unclear. This study examined the concurrent and prospective dose-response relationships between total physical activity (TPA) and (only) walking with HRQL in two age cohorts of women. Methods Participants were 10,698 women born in 1946-1951 and 7,646 born in 1921-1926, who completed three mailed surveys for the Australian Longitudinal Study on Women's Health. They reported weekly TPA minutes (sum of walking, moderate, and vigorous minutes). HRQL was measured with the Medical Outcomes Study Short-Form 36 Health Status Survey (SF-36). Linear mixed models, adjusted for socio-demographic and health-related variables, were used to examine associations between TPA level (none, very low, low, intermediate, sufficient, high, and very high) and SF-36 scores. For women who reported walking as their only physical activity, associations between walking and SF-36 scores were also examined. Results Curvilinear trends were observed between TPA and walking with SF-36 scores. Concurrently, HRQL scores increased significantly with increasing TPA and walking, in both cohorts, with increases less marked above sufficient activity levels. Prospectively, associations were attenuated although significant and meaningful improvements in physical functioning and vitality were observed across most TPA and walking categories above the low category. Conclusion For women in their 50s-80s without clinical depression, greater amounts of TPA are associated with better current and future HRQL, particularly physical functioning and vitality. Even if walking is their only activity, women, particularly those in their 70s-80s, have better health-related quality of life.
Resumo:
Catchment and riparian degradation has resulted in declining ecosystem health of streams worldwide. With restoration a priority in many regions, there is an increasing interest in the scale at which land use influences stream ecosystem health. Our goal was to use a substantial data set collected as part of a monitoring program (the Southeast Queensland, Australia, Ecological Health Monitoring Program data set, collected at 116 sites over six years) to identify the spatial scale of land use, or the combination of spatial scales, that most strongly influences overall ecosystem health. In addition, we aimed to determine whether the most influential scale differed for different aspects of ecosystem health. We used linear-mixed models and a Bayesian model-averaging approach to generate models for the overall aggregated ecosystem health score and for each of the five component indicators (fish, macroinvertebrates, water quality, nutrients, and ecosystem processes) that make up the score. Dense forest close to the survey site, mid-dense forest in the hydrologically active nearstream areas of the catchment, urbanization in the riparian buffer, and tree cover at the reach scale were all significant in explaining ecosystem health, suggesting an overriding influence of forest cover, particularly close to the stream. Season and antecedent rainfall were also important explanatory variables, with some land-use variables showing significant seasonal interactions. There were also differential influences of land use for each of the component indicators. Our approach is useful given that restoring general ecosystem health is the focus of many stream restoration projects; it allowed us to predict the scale and catchment position of restoration that would result in the greatest improvement of ecosystem health in the regions streams and rivers. The models we generated suggested that good ecosystem health can be maintained in catchments where 80% of hydrologically active areas in close proximity to the stream have mid-dense forest cover and moderate health can be obtained with 60% cover.
Resumo:
BACKGROUND: To develop evidence-based approaches for reducing sedentary behavior, there is a need to identify the specific settings where prolonged sitting occurs, associated factors, and variations. PURPOSE: To examine the sociodemographic and health factors associated with mid-aged adults' sitting time in three contexts and variations between weekdays and weekend days. METHODS: A mail survey was sent to 17,000 adults (aged 40-65 years) in 2007; 11,037 responses were received (68.5%); and 7719 were analyzed in 2010. Respondents indicated time spent sitting on a usual weekday and weekend day for watching TV, general leisure, and home computer use. Multivariate linear mixed models with area-level random intercepts were used to examine (1) associations between sociodemographic and health variables and sitting time, and (2) interaction effects of weekday/weekend day with each of gender, age, education, and employment status, on sitting time. RESULTS: For each context, longer sitting times were reported by those single and living alone, and those whose health restricted activity. For watching TV, longer sitting times were reported by men; smokers; and those with high school or lower education, not in paid employment, in poor health, and with BMI ≥25. For general leisure, longer sitting times were reported by women, smokers, and those not employed full-time. For home computer use, longer sitting times were reported by men; and those aged 40-44 years, with university qualifications; in the mid-income range; and with BMI ≥30. Sitting times tended to be longer on weekend days than weekdays, although the extent of this differed among sociodemographic groups. CONCLUSIONS: Sociodemographic and health factors associated with sitting time differ by context and between weekdays and weekend days.
Resumo:
Purpose To investigate longitudinal changes of subbasal nerve plexus (SNP) morphology and its relationship with conventional measures of neuropathy in individuals with diabetes. Methods A cohort of 147 individuals with type 1 diabetes and 60 age-balanced controls underwent detailed assessment of clinical and metabolic factors, neurologic deficits, quantitative sensory testing, nerve conduction studies and corneal confocal microscopy at baseline and four subsequent annual visits. The SNP parameters included corneal nerve fiber density (CNFD), branch density (CNBD) and fiber length (CNFL) and were quantified using a fully-automated algorithm. Linear mixed models were fitted to examine the changes in corneal nerve parameters over time. Results At baseline, 27% of the participants had mild diabetic neuropathy. All SNP parameters were significantly lower in the neuropathy group compared to controls (P<0.05). Overall, 89% of participants examined at baseline also completed the final visit. There was no clinically significant change to health and metabolic parameters and neuropathy measures from baseline to the final visit. Linear mixed model revealed a significant linear decline of CNFD (annual change rate, -0.9 nerve/mm2, P=0.01) in the neuropathy group compared to controls, which was associated with age (β=-0.06, P=0.04) and duration of diabetes (β=-0.08, P=0.03). In the neuropathy group, absolute changes of CNBD and CNFL showed moderate correlations with peroneal conduction velocity and cold sensation threshold, respectively (rs, 0.38 and 0.40, P<0.05). Conclusion This study demonstrates dynamic small fiber damage at the SNP, thus providing justification for our ongoing efforts to establish corneal nerve morphology as an appropriate adjunct to conventional measures of DPN.
Resumo:
Aim Large-scale patterns linking energy availability, biological productivity and diversity form a central focus of ecology. Despite evidence that the activity and abundance of animals may be limited by climatic variables associated with regional biological productivity (e.g. mean annual precipitation and annual actual evapotranspiration), it is unclear whether plant–granivore interactions are themselves influenced by these climatic factors across broad spatial extents. We evaluated whether climatic conditions that are known to alter the abundance and activity of granivorous animals also affect rates of seed removal. Location Eleven sites across temperate North America. Methods We used a common protocol to assess the removal of the same seed species (Avena sativa) over a 2-day period. Model selection via the Akaike information criterion was used to determine a set of candidate binomial generalized linear mixed models that evaluated the relationship between local climatic data and post-dispersal seed predation. Results Annual actual evapotranspiration was the single best predictor of the proportion of seeds removed. Annual actual evapotranspiration and mean annual precipitation were both positively related to mean seed removal and were included in four and three of the top five models, respectively. Annual temperature range was also positively related to seed removal and was an explanatory variable in three of the top four models. Main conclusions Our work provides the first evidence that energy and precipitation, which are known to affect consumer abundance and activity, also translate to strong, predictable patterns of seed predation across a continent. More generally, these findings suggest that future changes in temperature and precipitation could have widespread consequences for plant species composition in grasslands, through impacts on plant recruitment.
Resumo:
Background: While weight gain following breast cancer is considered common, results supporting these findings are dated. This work describes changes in body weight following breast cancer over 72 months, compares weight with normative data and explores whether weight changes over time are associated with personal, diagnostic, treatment or behavioral characteristics. Methods: A population-based sample of 287 Australian women diagnosed with early-stage invasive breast cancer was assessed prospectively at six, 12, 18 and 72 months post-surgery. Weight was clinically measured and linear mixed models were used to explore associations between weight and participant characteristics (collected via self-administered questionnaire). Those with BMI changes of one or more units were considered to have experienced clinically significant changes in weight. Results: More than half (57%) of participants were overweight or obese at 6 months post-surgery, and by 72 months post-surgery 68% of women were overweight or obese. Among those who gained more weight than age-matched norms, clinically significant weight gain between 6 and 18 months and 6 and 72 months post-surgery was observed in 24% and 39% of participants, respectively (median [range] weight gain: 3.9kg [2.0-11.3kg] and 5.2kg [0.6-28.7], respectively). Clinically-significant weight losses were observed in up to 24% of the sample (median [range] weight loss between 6 and 72 months post-surgery: -6.4kg [-1.9--24.6kg]). More extensive lymph node removal, being treated on the non-dominant side, receiving radiation therapy and lower physical activity levels at 6 months was associated with higher body weights post-breast cancer (group differences >3kg; all p<0.05). Conclusions: While average weight gain among breast cancer survivors in the long-term is small, subgroups of women experience greater gains linked with adverse health and above that experienced by age-matched counterparts. Weight change post-breast cancer is a contemporary public health issue and the integration of healthy weight education and support into standard breast cancer care has potential to significantly improve the length and quality of cancer survivorship.
Resumo:
Objective - Report long term outcomes of the NOURISH randomized controlled trial (RCT) that evaluated a universal intervention commencing in infancy to provide anticipatory guidance to first-time mothers on ‘protective’ complementary feeding practices which were hypothesized to reduce childhood obesity risk. Subjects and Methods - The NOURISH RCT enrolled 698 mothers (mean age 30.1 years, SD=5.3) with healthy term infants (51% female). Mothers were randomly allocated to usual care or to attend two 6-session, 12-week group education modules. Outcomes were assessed five times: baseline (infants 4.3 months); 6 months after module 1 (infants 14 months); 6 months after module 2 (infants 2 years) and at 3.5 and 5 years of age. Maternal feeding practices were self-reported using validated questionnaires. BMI Z-score was calculated from measured child height and weight. Linear Mixed Models evaluated intervention (group) effect across time. Results - Retention at 5 years of age was 61%. Across ages 2-5 years, intervention mothers reported less frequent use of non-responsive feeding practices on 6/9 scales. At 5 years they also reported more appropriate responses to food refusal on 7/12 items (Ps ≤.05). No statistically significant group effect was noted for anthropometric outcomes (BMI Z-score: P=.06), or the prevalence of overweight/obesity (control 13.3% vs. intervention 11.4%, P=.66). Conclusions - Anticipatory guidance on complementary feeding resulted in first-time mothers reporting increased use of protective feeding practices. These intervention effects were sustained up to five years of age and were paralleled by a non-significant trend for lower child BMI Z-scores at all post-intervention assessment points.
Resumo:
OBJECTIVE: To evaluate the effectiveness of a telephone-delivered behavioral weight loss and physical activity intervention targeting Australian primary care patients with type 2 diabetes. RESEARCH DESIGN AND METHODS: Pragmatic randomized controlled trial of telephone counseling (n = 151) versus usual care (n = 151). Reported here are 18-month (end-of-intervention) and 24-month (maintenance) primary outcomes of weight, moderate-to-vigorous-intensity physical activity (MVPA; via accelerometer), and HbA1c level. Secondary outcomes include dietary energy intake and diet quality, waist circumference, lipid levels, and blood pressure. Data were analyzed via adjusted linear mixed models with multiple imputation of missing data. RESULTS: Relative to usual-care participants, telephone counseling participants achieved modest, but significant, improvements in weight loss (relative rate [RR] -1.42% of baseline body weight [95% CI -2.54 to -0.30% of baseline body weight]), MVPA (RR 1.42 [95% CI 1.06-1.90]), diet quality (2.72 [95% CI 0.55-4.89]), and waist circumference (-1.84 cm [95% CI -3.16 to -0.51 cm]), but not in HbA1c level (RR 0.99 [95% CI 0.96-1.02]), or other cardio-metabolic markers. None of the outcomes showed a significant change/deterioration over the maintenance period. However, only the intervention effect for MVPA remained statistically significant at 24 months. CONCLUSIONS: The modest improvements in weight loss and behavior change, but the lack of changes in cardio-metabolic markers, may limit the utility, scalability, and sustainability of such an approach.
Resumo:
With growing population and fast urbanization in Australia, it is a challenging task to maintain our water quality. It is essential to develop an appropriate statistical methodology in analyzing water quality data in order to draw valid conclusions and hence provide useful advices in water management. This paper is to develop robust rank-based procedures for analyzing nonnormally distributed data collected over time at different sites. To take account of temporal correlations of the observations within sites, we consider the optimally combined estimating functions proposed by Wang and Zhu (Biometrika, 93:459-464, 2006) which leads to more efficient parameter estimation. Furthermore, we apply the induced smoothing method to reduce the computational burden. Smoothing leads to easy calculation of the parameter estimates and their variance-covariance matrix. Analysis of water quality data from Total Iron and Total Cyanophytes shows the differences between the traditional generalized linear mixed models and rank regression models. Our analysis also demonstrates the advantages of the rank regression models for analyzing nonnormal data.