330 resultados para Linear Multi-step Formulae

em Queensland University of Technology - ePrints Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents an approach to predict the operating conditions of machine based on classification and regression trees (CART) and adaptive neuro-fuzzy inference system (ANFIS) in association with direct prediction strategy for multi-step ahead prediction of time series techniques. In this study, the number of available observations and the number of predicted steps are initially determined by using false nearest neighbor method and auto mutual information technique, respectively. These values are subsequently utilized as inputs for prediction models to forecast the future values of the machines’ operating conditions. The performance of the proposed approach is then evaluated by using real trending data of low methane compressor. A comparative study of the predicted results obtained from CART and ANFIS models is also carried out to appraise the prediction capability of these models. The results show that the ANFIS prediction model can track the change in machine conditions and has the potential for using as a tool to machine fault prognosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents Multi-Step A* (MSA*), a search algorithm based on A* for multi-objective 4D vehicle motion planning (three spatial and one time dimension). The research is principally motivated by the need for offline and online motion planning for autonomous Unmanned Aerial Vehicles (UAVs). For UAVs operating in large, dynamic and uncertain 4D environments, the motion plan consists of a sequence of connected linear tracks (or trajectory segments). The track angle and velocity are important parameters that are often restricted by assumptions and grid geometry in conventional motion planners. Many existing planners also fail to incorporate multiple decision criteria and constraints such as wind, fuel, dynamic obstacles and the rules of the air. It is shown that MSA* finds a cost optimal solution using variable length, angle and velocity trajectory segments. These segments are approximated with a grid based cell sequence that provides an inherent tolerance to uncertainty. Computational efficiency is achieved by using variable successor operators to create a multi-resolution, memory efficient lattice sampling structure. Simulation studies on the UAV flight planning problem show that MSA* meets the time constraints of online replanning and finds paths of equivalent cost but in a quarter of the time (on average) of vector neighbourhood based A*.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The research presented in this thesis addresses inherent problems in signaturebased intrusion detection systems (IDSs) operating in heterogeneous environments. The research proposes a solution to address the difficulties associated with multistep attack scenario specification and detection for such environments. The research has focused on two distinct problems: the representation of events derived from heterogeneous sources and multi-step attack specification and detection. The first part of the research investigates the application of an event abstraction model to event logs collected from a heterogeneous environment. The event abstraction model comprises a hierarchy of events derived from different log sources such as system audit data, application logs, captured network traffic, and intrusion detection system alerts. Unlike existing event abstraction models where low-level information may be discarded during the abstraction process, the event abstraction model presented in this work preserves all low-level information as well as providing high-level information in the form of abstract events. The event abstraction model presented in this work was designed independently of any particular IDS and thus may be used by any IDS, intrusion forensic tools, or monitoring tools. The second part of the research investigates the use of unification for multi-step attack scenario specification and detection. Multi-step attack scenarios are hard to specify and detect as they often involve the correlation of events from multiple sources which may be affected by time uncertainty. The unification algorithm provides a simple and straightforward scenario matching mechanism by using variable instantiation where variables represent events as defined in the event abstraction model. The third part of the research looks into the solution to address time uncertainty. Clock synchronisation is crucial for detecting multi-step attack scenarios which involve logs from multiple hosts. Issues involving time uncertainty have been largely neglected by intrusion detection research. The system presented in this research introduces two techniques for addressing time uncertainty issues: clock skew compensation and clock drift modelling using linear regression. An off-line IDS prototype for detecting multi-step attacks has been implemented. The prototype comprises two modules: implementation of the abstract event system architecture (AESA) and of the scenario detection module. The scenario detection module implements our signature language developed based on the Python programming language syntax and the unification-based scenario detection engine. The prototype has been evaluated using a publicly available dataset of real attack traffic and event logs and a synthetic dataset. The distinct features of the public dataset are the fact that it contains multi-step attacks which involve multiple hosts with clock skew and clock drift. These features allow us to demonstrate the application and the advantages of the contributions of this research. All instances of multi-step attacks in the dataset have been correctly identified even though there exists a significant clock skew and drift in the dataset. Future work identified by this research would be to develop a refined unification algorithm suitable for processing streams of events to enable an on-line detection. In terms of time uncertainty, identified future work would be to develop mechanisms which allows automatic clock skew and clock drift identification and correction. The immediate application of the research presented in this thesis is the framework of an off-line IDS which processes events from heterogeneous sources using abstraction and which can detect multi-step attack scenarios which may involve time uncertainty.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Unmanned Aerial Vehicles (UAVs) are emerging as an ideal platform for a wide range of civil applications such as disaster monitoring, atmospheric observation and outback delivery. However, the operation of UAVs is currently restricted to specially segregated regions of airspace outside of the National Airspace System (NAS). Mission Flight Planning (MFP) is an integral part of UAV operation that addresses some of the requirements (such as safety and the rules of the air) of integrating UAVs in the NAS. Automated MFP is a key enabler for a number of UAV operating scenarios as it aids in increasing the level of onboard autonomy. For example, onboard MFP is required to ensure continued conformance with the NAS integration requirements when there is an outage in the communications link. MFP is a motion planning task concerned with finding a path between a designated start waypoint and goal waypoint. This path is described with a sequence of 4 Dimensional (4D) waypoints (three spatial and one time dimension) or equivalently with a sequence of trajectory segments (or tracks). It is necessary to consider the time dimension as the UAV operates in a dynamic environment. Existing methods for generic motion planning, UAV motion planning and general vehicle motion planning cannot adequately address the requirements of MFP. The flight plan needs to optimise for multiple decision objectives including mission safety objectives, the rules of the air and mission efficiency objectives. Online (in-flight) replanning capability is needed as the UAV operates in a large, dynamic and uncertain outdoor environment. This thesis derives a multi-objective 4D search algorithm entitled Multi- Step A* (MSA*) based on the seminal A* search algorithm. MSA* is proven to find the optimal (least cost) path given a variable successor operator (which enables arbitrary track angle and track velocity resolution). Furthermore, it is shown to be of comparable complexity to multi-objective, vector neighbourhood based A* (Vector A*, an extension of A*). A variable successor operator enables the imposition of a multi-resolution lattice structure on the search space (which results in fewer search nodes). Unlike cell decomposition based methods, soundness is guaranteed with multi-resolution MSA*. MSA* is demonstrated through Monte Carlo simulations to be computationally efficient. It is shown that multi-resolution, lattice based MSA* finds paths of equivalent cost (less than 0.5% difference) to Vector A* (the benchmark) in a third of the computation time (on average). This is the first contribution of the research. The second contribution is the discovery of the additive consistency property for planning with multiple decision objectives. Additive consistency ensures that the planner is not biased (which results in a suboptimal path) by ensuring that the cost of traversing a track using one step equals that of traversing the same track using multiple steps. MSA* mitigates uncertainty through online replanning, Multi-Criteria Decision Making (MCDM) and tolerance. Each trajectory segment is modeled with a cell sequence that completely encloses the trajectory segment. The tolerance, measured as the minimum distance between the track and cell boundaries, is the third major contribution. Even though MSA* is demonstrated for UAV MFP, it is extensible to other 4D vehicle motion planning applications. Finally, the research proposes a self-scheduling replanning architecture for MFP. This architecture replicates the decision strategies of human experts to meet the time constraints of online replanning. Based on a feedback loop, the proposed architecture switches between fast, near-optimal planning and optimal planning to minimise the need for hold manoeuvres. The derived MFP framework is original and shown, through extensive verification and validation, to satisfy the requirements of UAV MFP. As MFP is an enabling factor for operation of UAVs in the NAS, the presented work is both original and significant.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The reliability analysis is crucial to reducing unexpected down time, severe failures and ever tightened maintenance budget of engineering assets. Hazard based reliability methods are of particular interest as hazard reflects the current health status of engineering assets and their imminent failure risks. Most existing hazard models were constructed using the statistical methods. However, these methods were established largely based on two assumptions: one is the assumption of baseline failure distributions being accurate to the population concerned and the other is the assumption of effects of covariates on hazards. These two assumptions may be difficult to achieve and therefore compromise the effectiveness of hazard models in the application. To address this issue, a non-linear hazard modelling approach is developed in this research using neural networks (NNs), resulting in neural network hazard models (NNHMs), to deal with limitations due to the two assumptions for statistical models. With the success of failure prevention effort, less failure history becomes available for reliability analysis. Involving condition data or covariates is a natural solution to this challenge. A critical issue for involving covariates in reliability analysis is that complete and consistent covariate data are often unavailable in reality due to inconsistent measuring frequencies of multiple covariates, sensor failure, and sparse intrusive measurements. This problem has not been studied adequately in current reliability applications. This research thus investigates such incomplete covariates problem in reliability analysis. Typical approaches to handling incomplete covariates have been studied to investigate their performance and effects on the reliability analysis results. Since these existing approaches could underestimate the variance in regressions and introduce extra uncertainties to reliability analysis, the developed NNHMs are extended to include handling incomplete covariates as an integral part. The extended versions of NNHMs have been validated using simulated bearing data and real data from a liquefied natural gas pump. The results demonstrate the new approach outperforms the typical incomplete covariates handling approaches. Another problem in reliability analysis is that future covariates of engineering assets are generally unavailable. In existing practices for multi-step reliability analysis, historical covariates were used to estimate the future covariates. Covariates of engineering assets, however, are often subject to substantial fluctuation due to the influence of both engineering degradation and changes in environmental settings. The commonly used covariate extrapolation methods thus would not be suitable because of the error accumulation and uncertainty propagation. To overcome this difficulty, instead of directly extrapolating covariate values, projection of covariate states is conducted in this research. The estimated covariate states and unknown covariate values in future running steps of assets constitute an incomplete covariate set which is then analysed by the extended NNHMs. A new assessment function is also proposed to evaluate risks of underestimated and overestimated reliability analysis results. A case study using field data from a paper and pulp mill has been conducted and it demonstrates that this new multi-step reliability analysis procedure is able to generate more accurate analysis results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective The review addresses two distinct sets of issues: 1. specific functionality, interface, and calculation problems that presumably can be fixed or improved; and 2. the more fundamental question of whether the system is close to being ready for ‘commercial prime time’ in the North American market. Findings Many of our comments relate to the first set of issues, especially sections B and C. Sections D and E deal with the second set. Overall, we feel that LCADesign represents a very impressive step forward in the ongoing quest to link CAD with LCA tools and, more importantly, to link the world of architectural practice and that of environmental research. From that perspective, it deserves continued financial support as a research project. However, if the decision is whether or not to continue the development program from a purely commercial perspective, we are less bullish. In terms of the North American market, there are no regulatory or other drivers to press design teams to use a tool of this nature. There is certainly interest in this area, but the tools must be very easy to use with little or no training. Understanding the results is as important in this regard as knowing how to apply the tool. Our comments are fairly negative when it comes to that aspect. Our opinion might change to some degree when the ‘fixes’ are made and the functionality improved. However, as discussed in more detail in the following sections, we feel that the multi-step process — CAD to IFC to LCADesign — could pose a serious problem in terms of market acceptance. The CAD to IFC part is impossible for us to judge with the information provided, and we can’t even begin to answer the question about the ease of using the software to import designs, but it appears cumbersome from what we do know. There does appear to be a developing North American market for 3D CAD, with a recent survey indicating that about 50% of the firms use some form of 3D modeling for about 75% of their projects. However, this does not mean that full 3D CAD is always being used. Our information suggests that AutoDesk accounts for about 75 to 80% of the 3D CAD market, and they are very cautious about any links that do not serve a latent demand. Finally, other system that link CAD to energy simulation are using XML data transfer protocols rather than IFC files, and it is our understanding that the market served by AutoDesk tends in that direction right now. This is a subject that is outside our area of expertise, so please take these comments as suggestions for more intensive market research rather than as definitive findings.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Due to increased complexity, scale, and functionality of information and telecommunication (IT) infrastructures, every day new exploits and vulnerabilities are discovered. These vulnerabilities are most of the time used by ma¬licious people to penetrate these IT infrastructures for mainly disrupting business or stealing intellectual pro¬perties. Current incidents prove that it is not sufficient anymore to perform manual security tests of the IT infra¬structure based on sporadic security audits. Instead net¬works should be continuously tested against possible attacks. In this paper we present current results and challenges towards realizing automated and scalable solutions to identify possible attack scenarios in an IT in¬frastructure. Namely, we define an extensible frame¬work which uses public vulnerability databases to identify pro¬bable multi-step attacks in an IT infrastructure, and pro¬vide recommendations in the form of patching strategies, topology changes, and configuration updates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper proposes a practical prediction procedure for vertical displacement of a Rotarywing Unmanned Aerial Vehicle (RUAV) landing deck in the presence of stochastic sea state disturbances. A proper time series model tending to capture characteristics of the dynamic relationship between an observer and a landing deck is constructed, with model orders determined by a novel principle based on Bayes Information Criterion (BIC) and coefficients identified using the Forgetting Factor Recursive Least Square (FFRLS) method. In addition, a fast-converging online multi-step predictor is developed, which can be implemented more rapidly than the Auto-Regressive (AR) predictor as it requires less memory allocations when updating coefficients. Simulation results demonstrate that the proposed prediction approach exhibits satisfactory prediction performance, making it suitable for integration into ship-helicopter approach and landing guidance systems in consideration of computational capacity of the flight computer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Multiple sclerosis (MS) is the most common cause of chronic neurologic disability beginning in early to middle adult life. Results from recent genome-wide association studies (GWAS) have substantially lengthened the list of disease loci and provide convincing evidence supporting a multifactorial and polygenic model of inheritance. Nevertheless, the knowledge of MS genetics remains incomplete, with many risk alleles still to be revealed. Methods: We used a discovery GWAS dataset (8,844 samples, 2,124 cases and 6,720 controls) and a multi-step logistic regression protocol to identify novel genetic associations. The emerging genetic profile included 350 independent markers and was used to calculate and estimate the cumulative genetic risk in an independent validation dataset (3,606 samples). Analysis of covariance (ANCOVA) was implemented to compare clinical characteristics of individuals with various degrees of genetic risk. Gene ontology and pathway enrichment analysis was done using the DAVID functional annotation tool, the GO Tree Machine, and the Pathway-Express profiling tool. Results: In the discovery dataset, the median cumulative genetic risk (P-Hat) was 0.903 and 0.007 in the case and control groups, respectively, together with 79.9% classification sensitivity and 95.8% specificity. The identified profile shows a significant enrichment of genes involved in the immune response, cell adhesion, cell communication/ signaling, nervous system development, and neuronal signaling, including ionotropic glutamate receptors, which have been implicated in the pathological mechanism driving neurodegeneration. In the validation dataset, the median cumulative genetic risk was 0.59 and 0.32 in the case and control groups, respectively, with classification sensitivity 62.3% and specificity 75.9%. No differences in disease progression or T2-lesion volumes were observed among four levels of predicted genetic risk groups (high, medium, low, misclassified). On the other hand, a significant difference (F = 2.75, P = 0.04) was detected for age of disease onset between the affected misclassified as controls (mean = 36 years) and the other three groups (high, 33.5 years; medium, 33.4 years; low, 33.1 years). Conclusions: The results are consistent with the polygenic model of inheritance. The cumulative genetic risk established using currently available genome-wide association data provides important insights into disease heterogeneity and completeness of current knowledge in MS genetics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bundle adjustment is one of the essential components of the computer vision toolbox. This paper revisits the resection-intersection approach, which has previously been shown to have inferior convergence properties. Modifications are proposed that greatly improve the performance of this method, resulting in a fast and accurate approach. Firstly, a linear triangulation step is added to the intersection stage, yielding higher accuracy and improved convergence rate. Secondly, the effect of parameter updates is tracked in order to reduce wasteful computation; only variables coupled to significantly changing variables are updated. This leads to significant improvements in computation time, at the cost of a small, controllable increase in error. Loop closures are handled effectively without the need for additional network modelling. The proposed approach is shown experimentally to yield comparable accuracy to a full sparse bundle adjustment (20% error increase) while computation time scales much better with the number of variables. Experiments on a progressive reconstruction system show the proposed method to be more efficient by a factor of 65 to 177, and 4.5 times more accurate (increasing over time) than a localised sparse bundle adjustment approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Trigonopsis variabilis D-amino acid oxidase (TvDAO) is a well characterized enzyme used for cephalosporin C conversion on industrial scale. However, the demands on the enzyme with respect to activity, operational stability and costs also vary with the field of application. Processes that use the soluble enzyme suffer from fast inactivation of TvDAO while immobilized oxidase preparations raise issues related to expensive carriers and catalyst efficiency. Therefore, oxidase preparations that are more robust and active than those currently available would enable a much broader range of economically viable applications of this enzyme in fine chemical syntheses. A multi-step engineering approach was chosen here to develop a robust and highly active Pichia pastoris TvDAO whole-cell biocatalyst. As compared to the native T. variabilis host, a more than seven-fold enhancement of the intracellular level of oxidase activity was achieved in P. pastoris through expression optimization by codon redesign as well as efficient subcellular targeting of the enzyme to peroxisomes. Multi copy integration further doubled expression and the specific activity of the whole cell catalyst. From a multicopy production strain, about 1.3 x 103 U/g wet cell weight (wcw) were derived by standard induction conditions feeding pure methanol. A fed-batch cultivation protocol using a mixture of methanol and glycerol in the induction phase attenuated the apparent toxicity of the recombinant oxidase to yield final biomass concentrations in the bioreactor of >or= 200 g/L compared to only 117 g/L using the standard methanol feed. Permeabilization of P. pastoris using 10% isopropanol yielded a whole-cell enzyme preparation that showed 49% of the total available intracellular oxidase activity and was notably stabilized (by three times compared to a widely used TvDAO expressing Escherichia coli strain) under conditions of D-methionine conversion using vigorous aeration. Stepwise optimization using a multi-level engineering approach has delivered a new P. pastoris whole cell TvDAO biocatalyst showing substantially enhanced specific activity and stability under operational conditions as compared to previously reported preparations of the enzyme. The production of the oxidase through fed-batch bioreactor culture and subsequent cell permeabilization is high-yielding and efficient. Therefore this P. pastoris catalyst has been evaluated for industrial purposes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Carcinoma ex pleomorphic adenoma (Ca ex PA) is a carcinoma arising from a primary or recurrent benign pleomorphic adenoma. It often poses a diagnostic challenge to clinicians and pathologists. This study intends to review the literature and highlight the current clinical and molecular perspectives about this entity. The most common clinical presentation of CA ex PA is of a firm mass in the parotid gland. The proportion of adenoma and carcinoma components determines the macroscopic features of this neoplasm. The entity is difficult to diagnose pre-operatively. Pathologic assessment is the gold standard for making the diagnosis. Treatment for Ca ex PA often involves an ablative surgical procedure which may be followed by radiotherapy. Overall, patients with Ca ex PA have a poor prognosis. Accurate diagnosis and aggressive surgical management of patients presenting with Ca ex PA can increase their survival rates. Molecular studies have revealed that the development of Ca ex PA follows a multi-step model of carcinogenesis, with the progressive loss of heterozygosity at chromosomal arms 8q, then 12q and finally 17p. There are specific candidate genes in these regions that are associated with particular stages in the progression of Ca ex PA. In addition, many genes which regulate tumour suppression, cell cycle control, growth factors and cell-cell adhesion play a role in the development and progression of Ca ex PA. It is hopeful that these molecular data can give clues for the diagnosis and management of the disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In structural brain MRI, group differences or changes in brain structures can be detected using Tensor-Based Morphometry (TBM). This method consists of two steps: (1) a non-linear registration step, that aligns all of the images to a common template, and (2) a subsequent statistical analysis. The numerous registration methods that have recently been developed differ in their detection sensitivity when used for TBM, and detection power is paramount in epidemological studies or drug trials. We therefore developed a new fluid registration method that computes the mappings and performs statistics on them in a consistent way, providing a bridge between TBM registration and statistics. We used the Log-Euclidean framework to define a new regularizer that is a fluid extension of the Riemannian elasticity, which assures diffeomorphic transformations. This regularizer constrains the symmetrized Jacobian matrix, also called the deformation tensor. We applied our method to an MRI dataset from 40 fraternal and identical twins, to revealed voxelwise measures of average volumetric differences in brain structure for subjects with different degrees of genetic resemblance.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Within the current climate of unpredictability and constant change, young people at school are faced with a multitude of choices and contradictory influences. In this article, I argue that (re)presentations of young people in youth research need to reflect the complexity and multiplicity of their lives and changing priorities, and I attempt to (re)present a small group of young people in this particular milieu. I illustrate some of the competing influences in their lives, and I outline some specific strategies that are useful for (re)presenting these contextual worlds. The strategies I advocate disrupt the homogenous representations of ‘youth’ as a developmental phase and instead reflect the diverse spheres of influence which shape their subjectivities and practices.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Motorcyclists are the most crash-prone road-user group in many Asian countries including Singapore; however, factors influencing motorcycle crashes are still not well understood. This study examines the effects of various roadway characteristics, traffic control measures and environmental factors on motorcycle crashes at different location types including expressways and intersections. Using techniques of categorical data analysis, this study has developed a set of log-linear models to investigate multi-vehicle motorcycle crashes in Singapore. Motorcycle crash risks in different circumstances have been calculated after controlling for the exposure estimated by the induced exposure technique. Results show that night-time influence increases crash risks of motorcycles particularly during merging and diverging manoeuvres on expressways, and turning manoeuvres at intersections. Riders appear to exercise more care while riding on wet road surfaces particularly during night. Many hazardous interactions at intersections tend to be related to the failure of drivers to notice a motorcycle as well as to judge correctly the speed/distance of an oncoming motorcycle. Road side conflicts due to stopping/waiting vehicles and interactions with opposing traffic on undivided roads have been found to be as detrimental factors on motorcycle safety along arterial, main and local roads away from intersections. Based on the findings of this study, several targeted countermeasures in the form of legislations, rider training, and safety awareness programmes have been recommended.