201 resultados para Lexical access
em Queensland University of Technology - ePrints Archive
Resumo:
The provision of visual support to individuals with an autism spectrum disorder (ASD) is widely recommended. We explored one mechanism underlying the use of visual supports: efficiency of language processing. Two groups of children, one with and one without an ASD, participated. The groups had comparable oral and written language skills and nonverbal cognitive abilities. In two semantic priming experiments, prime modality and prime–target relatedness were manipulated. Response time and accuracy of lexical decisions on the spoken word targets were measured. In the first uni-modal experiment, both groups demonstrated significant priming effects. In the second experiment which was cross-modal, no effect for relatedness or group was found. This result is considered in the light of the attentional capacity required for access to the lexicon via written stimuli within the developing semantic system. These preliminary findings are also considered with respect to the use of visual support for children with ASD.
Resumo:
Contemporary models of spoken word production assume conceptual feature sharing determines the speed with which objects are named in categorically-related contexts. However, statistical models of concept representation have also identified a role for feature distinctiveness, i.e., features that identify a single concept and serve to distinguish it quickly from other similar concepts. In three experiments we investigated whether distinctive features might explain reports of counter-intuitive semantic facilitation effects in the picture word interference (PWI) paradigm. In Experiment 1, categorically-related distractors matched in terms of semantic similarity ratings (e.g., zebra and pony) and manipulated with respect to feature distinctiveness (e.g., a zebra has stripes unlike other equine species) elicited interference effects of comparable magnitude. Experiments 2 and 3 investigated the role of feature distinctiveness with respect to reports of facilitated naming with part-whole distractor-target relations (e.g., a hump is a distinguishing part of a CAMEL, whereas knee is not, vs. an unrelated part such as plug). Related part distractors did not influence target picture naming latencies significantly when the part denoted by the related distractor was not visible in the target picture (whether distinctive or not; Experiment 2). When the part denoted by the related distractor was visible in the target picture, non-distinctive part distractors slowed target naming significantly at SOA of -150 ms (Experiment 3). Thus, our results show that semantic interference does occur for part-whole distractor-target relations in PWI, but only when distractors denote features shared with the target and other category exemplars. We discuss the implications of these results for some recently developed, novel accounts of lexical access in spoken word production.
Resumo:
Spoken word production is assumed to involve stages of processing in which activation spreads through layers of units comprising lexical-conceptual knowledge and their corresponding phonological word forms. Using high-field (4T) functional magnetic resonance imagine (fMRI), we assessed whether the relationship between these stages is strictly serial or involves cascaded-interactive processing, and whether central (decision/control) processing mechanisms are involved in lexical selection. Participants performed the competitor priming paradigm in which distractor words, named from a definition and semantically related to a subsequently presented target picture, slow picture-naming latency compared to that with unrelated words. The paradigm intersperses two trials between the definition and the picture to be named, temporally separating activation in the word perception and production networks. Priming semantic competitors of target picture names significantly increased activation in the left posterior temporal cortex, and to a lesser extent the left middle temporal cortex, consistent with the predictions of cascaded-interactive models of lexical access. In addition, extensive activation was detected in the anterior cingulate and pars orbitalis of the inferior frontal gyrus. The findings indicate that lexical selection during competitor priming is biased by top-down mechanisms to reverse associations between primed distractor words and target pictures to select words that meet the current goal of speech.
Resumo:
How does the presence of a categorically related word influence picture naming latencies? In order to test competitive and noncompetitive accounts of lexical selection in spoken word production, we employed the picture–word interference (PWI) paradigm to investigate how conceptual feature overlap influences naming latencies when distractors are category coordinates of the target picture. Mahon et al. (2007. Lexical selection is not by competition: A reinterpretation of semantic interference and facilitation effects in the picture-word interference paradigm. Journal of Experimental Psychology. Learning, Memory, and Cognition, 33(3), 503–535. doi:10.1037/0278-7393.33.3.503) reported that semantically close distractors (e.g., zebra) facilitated target picture naming latencies (e.g., HORSE) compared to far distractors (e.g., whale). We failed to replicate a facilitation effect for within-category close versus far target–distractor pairings using near-identical materials based on feature production norms, instead obtaining reliably larger interference effects (Experiments 1 and 2). The interference effect did not show a monotonic increase across multiple levels of within-category semantic distance, although there was evidence of a linear trend when unrelated distractors were included in analyses (Experiment 2). Our results show that semantic interference in PWI is greater for semantically close than for far category coordinate relations, reflecting the extent of conceptual feature overlap between target and distractor. These findings are consistent with the assumptions of prominent competitive lexical selection models of speech production.
Resumo:
Introduction Many bilinguals will have had the experience of unintentionally reading something in a language other than the intended one (e.g. MUG to mean mosquito in Dutch rather than a receptacle for a hot drink, as one of the possible intended English meanings), of finding themselves blocked on a word for which many alternatives suggest themselves (but, somewhat annoyingly, not in the right language), of their accent changing when stressed or tired and, occasionally, of starting to speak in a language that is not understood by those around them. These instances where lexical access appears compromised and control over language behavior is reduced hint at the intricate structure of the bilingual lexical architecture and the complexity of the processes by which knowledge is accessed and retrieved. While bilinguals might tend to blame word finding and other language problems on their bilinguality, these difficulties per se are not unique to the bilingual population. However, what is unique, and yet far more common than is appreciated by monolinguals, is the cognitive architecture that subserves bilingual language processing. With bilingualism (and multilingualism) the rule rather than the exception (Grosjean, 1982), this architecture may well be the default structure of the language processing system. As such, it is critical that we understand more fully not only how the processing of more than one language is subserved by the brain, but also how this understanding furthers our knowledge of the cognitive architecture that encapsulates the bilingual mental lexicon. The neurolinguistic approach to bilingualism focuses on determining the manner in which the two (or more) languages are stored in the brain and how they are differentially (or similarly) processed. The underlying assumption is that the acquisition of more than one language requires at the very least a change to or expansion of the existing lexicon, if not the formation of language-specific components, and this is likely to manifest in some way at the physiological level. There are many sources of information, ranging from data on bilingual aphasic patients (Paradis, 1977, 1985, 1997) to lateralization (Vaid, 1983; see Hull & Vaid, 2006, for a review), recordings of event-related potentials (ERPs) (e.g. Ardal et al., 1990; Phillips et al., 2006), and positron emission tomography (PET) and functional magnetic resonance imaging (fMRI) studies of neurologically intact bilinguals (see Indefrey, 2006; Vaid & Hull, 2002, for reviews). Following the consideration of methodological issues and interpretative limitations that characterize these approaches, the chapter focuses on how the application of these approaches has furthered our understanding of (1) selectivity of bilingual lexical access, (2) distinctions between word types in the bilingual lexicon and (3) control processes that enable language selection.
Resumo:
This study provides validity evidence for the Capture-Recapture (CR) method, borrowed from ecology, as a measure of second language (L2) productive vocabulary size (PVS). Two separate “captures” of productive vocabulary were taken using written word association tasks (WAT). At Time 1, 47 bilinguals provided at least 4 associates to each of 30 high-frequency stimulus words in English, their first language (L1), and in French, their L2. A few days later (Time 2), this procedure was repeated with a different set of stimulus words in each language. Since the WAT was used, both Lex30 and CR PVS scores were calculated in each language. Participants also completed an animacy judgment task assessing the speed and efficiency of lexical access. Results indicated that, in both languages, CR and Lex30 scores were significantly positively correlated (evidence of convergent validity). CR scores were also significantly larger in the L1, and correlated significantly with the speed of lexical access in the L2 (evidence of construct validity). These results point to the validity of the technique for estimating relative L2 PVS. However, CR scores are not a direct indication of absolute vocabulary size. A discussion of the method’s underlying assumptions and their implications for interpretation are provided.
Resumo:
For most people, speech production is relatively effortless and error-free. Yet it has long been recognized that we need some type of control over what we are currently saying and what we plan to say. Precisely how we monitor our internal and external speech has been a topic of research interest for several decades. The predominant approach in psycholinguistics has assumed monitoring of both is accomplished via systems responsible for comprehending others' speech. This special topic aimed to broaden the field, firstly by examining proposals that speech production might also engage more general systems, such as those involved in action monitoring. A second aim was to examine proposals for a production-specific, internal monitor. Both aims require that we also specify the nature of the representations subject to monitoring.
Resumo:
The “distractor-frequency effect” refers to the finding that high-frequency (HF) distractor words slow picture naming less than low-frequency distractors in the picture–word interference paradigm. Rival input and output accounts of this effect have been proposed. The former attributes the effect to attentional selection mechanisms operating during distractor recognition, whereas the latter attributes it to monitoring/decision mechanisms operating on distractor and target responses in an articulatory buffer. Using high-density (128-channel) EEG, we tested hypotheses from these rival accounts. In addition to conducting stimulus- and response-locked whole-brain corrected analyses, we investigated the correct-related negativity, an ERP observed on correct trials at fronto-central electrodes proposed to reflect the involvement of domain general monitoring. The wholebrain ERP analysis revealed a significant effect of distractor frequency at inferior right frontal and temporal sites between 100 and 300-msec post-stimulus onset, during which lexical access is thought to occur. Response-locked, region of interest (ROI) analyses of fronto-central electrodes revealed a correct-related negativity starting 121 msec before and peaking 125 msec after vocal onset on the grand averages. Slope analysis of this component revealed a significant difference between HF and lowfrequency distractor words, with the former associated with a steeper slope on the time windowspanning from100 msec before to 100 msec after vocal onset. The finding of ERP effects in time windows and components corresponding to both lexical processing and monitoring suggests the distractor frequency effect is most likely associated with more than one physiological mechanism.
Resumo:
In recent years the Australian government has dedicated considerable project funds to establish public Internet access points in rural and regional communities. Drawing on data from a major Australian study of the social and economic impact of new technologies on rural areas, this paper explores some of the difficulties rural communities have faced in setting up public access points and sustaining them beyond their project funding. Of particular concern is the way that economic sustainability has been positioned as a measure of the success of such ventures. Government funding has been allocated on the basis of these rural public access points becoming economically self-sustaining. This is problematic on a number of counts. It is therefore argued that these public access points should be reconceptualised as essential community infrastructure like schools and libraries, rather than potential economic enterprises. Author Keywords: Author Keywords: Internet; Public access; Sustainability; Digital divide; Rural Australia