6 resultados para Lennep, Jakob van, 1802-1868
em Queensland University of Technology - ePrints Archive
Resumo:
Coastal subsidence causes sea-level rise, shoreline erosion and wetland loss, which poses a threat to coastal populations. This is especially evident in the Mississippi Delta in the southern United States, which was devastated by Hurricane Katrina in 2005. The loss of protective wetlands is considered a critical factor in the extensive flood damage. The causes of subsidence in coastal Louisiana, attributed to factors as diverse as shallow compaction and deep crustal processes, remain controversial. Current estimates of subsidence rates vary by several orders of magnitude. Here, we use a series of radiocarbon-dated sediment cores from the Mississippi Delta to analyse late Holocene deposits and assess compaction rates. We find that millennial-scale compaction rates primarily associated with peat can reach 5mm per year, values that exceed recent model predictions. Locally and on timescales of decades to centuries, rates are likely to be 10 mm or more per year. We conclude that compaction of Holocene strata contributes significantly to the exceptionally high rates of relative sea-level rise and coastal wetland loss in the Mississippi Delta, and is likely to cause subsidence in other organic-rich and often densely populated coastal plains.
Resumo:
Density functional theory (DFT) is a powerful approach to electronic structure calculations in extended systems, but suffers currently from inadequate incorporation of long-range dispersion, or Van der Waals (VdW) interactions. VdW-corrected DFT is tested for interactions involving molecular hydrogen, graphite, single-walled carbon nanotubes (SWCNTs), and SWCNT bundles. The energy correction, based on an empirical London dispersion term with a damping function at short range, allows a reasonable physisorption energy and equilibrium distance to be obtained for H2 on a model graphite surface. The VdW-corrected DFT calculation for an (8, 8) nanotube bundle reproduces accurately the experimental lattice constant. For H2 inside or outside an (8, 8) SWCNT, we find the binding energies are respectively higher and lower than that on a graphite surface, correctly predicting the well known curvature effect. We conclude that the VdW correction is a very effective method for implementing DFT calculations, allowing a reliable description of both short-range chemical bonding and long-range dispersive interactions. The method will find powerful applications in areas of SWCNT research where empirical potential functions either have not been developed, or do not capture the necessary range of both dispersion and bonding interactions.
Resumo:
Various forms of hydrogenated graphene have been produced to date by several groups, while the synthesis of pure graphane has not been achieved yet. The study of the interface between graphane, in all its possible hydrogenation configurations, and catalyst metal surfaces can be pivotal to assess the feasibility of direct CVD growth methods for this material. We investigated the adhesion of graphane to a Cu(111) surface by adopting the vdW-DF2-C09 exchange-correlation functional, which is able to describe dispersion forces. The results are further compared with the PBE and the LDA exchange-correlation functionals. We calculated the most stable geometrical configurations of the slab/graphane interface and evaluated how graphane's geometrical parameters are modified. We show that dispersion forces play an important role in the slab/graphane adhesion. Band structure calculations demonstrated that in the presence of the interaction with copper, the band gap of graphane is not only preserved, but also enlarged, and this increase can be attributed to the electronic charge accumulated at the interface. We calculated a substantial energy barrier at the interface, suggesting that CVD graphane films might act as reliable and stable insulating thin coatings, or also be used to form compound layers in conjunction with metals and semiconductors.
Resumo:
As mentioned in the letter by van der Linden and van der Heijde, Jurgen Braun’s excellent recent paper describing a survey of blood donors by questionnaire, clinical, and magnetic resonance imaging examinations revealed a prevalence of ankylosing spondylitis in B27 positive blood donors (6.4%)1-1 very similar to that reported by Gran et al(6.7%).1-2 It is probable that some of the differences in reported prevalence of ankylosing spondylitis by the various studies are because of methodological differences.