175 resultados para Laser scanning display
em Queensland University of Technology - ePrints Archive
Resumo:
PURPOSE To investigate the utility of using non-contact laser-scanning confocal microscopy (NC-LSCM), compared with the more conventional contact laser-scanning confocal microscopy (C-LSCM), for examining corneal substructures in vivo. METHODS An attempt was made to capture representative images from the tear film and all layers of the cornea of a healthy, 35 year old female, using both NC-LSCM and C-LSCM, on separate days. RESULTS Using NC-LSCM, good quality images were obtained of the tear film, stroma, and a section of endothelium, but the corneal depth of the images of these various substructures could not be ascertained. Using C-LSCM, good quality, full-field images were obtained of the epithelium, subbasal nerve plexus, stroma, and endothelium, and the corneal depth of each of the captured images could be ascertained. CONCLUSIONS NC-LSCM may find general use for clinical examination of the tear film, stroma and endothelium, with the caveat that the depth of stromal images cannot be determined when using this technique. This technique also facilitates image capture of oblique sections of multiple corneal layers. The inability to clearly and consistently image thin corneal substructures - such as the tear film, subbasal nerve plexus and endothelium - is a key limitation of NC-LSCM.
Resumo:
Purpose To determine the association between conjunctival goblet cell density (GCD) assessed using in vivo laser scanning confocal microscopy and conjunctival impression cytology in a healthy population. Methods Ninety (90) healthy participants undertook a validated 5-item dry eye questionnaire, non-invasive tear film break-up time measurement, ocular surface fluorescein staining and phenol red thread test. These tests where undertaken to diagnose and exclude participants with dry eye. The nasal bulbar conjunctiva was imaged using laser scanning confocal microscopy (LSCM). Conjunctival impression cytology (CIC) was performed in the same region a few minutes later. Conjunctival goblet cell density was calculated as cells/mm2. Results There was a strong positive correlation of conjunctival GCD between LSCM and CIC (ρ = 0.66). Conjunctival goblet cell density was 475 ± 41 cells/mm2 and 466 ± 51 cells/mm2 measured by LSCM and CIC, respectively. Conclusions The strong association between in vivo and in vitro cellular analysis for measuring conjunctival GCD suggests that the more invasive CIC can be replaced by the less invasive LSCM in research and clinical practice.
Resumo:
Accurate three-dimensional representations of cultural heritage sites are highly valuable for scientific study, conservation, and educational purposes. In addition to their use for archival purposes, 3D models enable efficient and precise measurement of relevant natural and architectural features. Many cultural heritage sites are large and complex, consisting of multiple structures spatially distributed over tens of thousands of square metres. The process of effectively digitising such geometrically complex locations requires measurements to be acquired from a variety of viewpoints. While several technologies exist for capturing the 3D structure of objects and environments, none are ideally suited to complex, large-scale sites, mainly due to their limited coverage or acquisition efficiency. We explore the use of a recently developed handheld mobile mapping system called Zebedee in cultural heritage applications. The Zebedee system is capable of efficiently mapping an environment in three dimensions by continually acquiring data as an operator holding the device traverses through the site. The system was deployed at the former Peel Island Lazaret, a culturally significant site in Queensland, Australia, consisting of dozens of buildings of various sizes spread across an area of approximately 400 × 250 m. With the Zebedee system, the site was scanned in half a day, and a detailed 3D point cloud model (with over 520 million points) was generated from the 3.6 hours of acquired data in 2.6 hours. We present results demonstrating that Zebedee was able to accurately capture both site context and building detail comparable in accuracy to manual measurement techniques, and at a greatly increased level of efficiency and scope. The scan allowed us to record derelict buildings that previously could not be measured because of the scale and complexity of the site. The resulting 3D model captures both interior and exterior features of buildings, including structure, materials, and the contents of rooms.
Resumo:
Purpose The aim of this work is to develop a more complete understanding of the in vivo histology of the human palpebral conjunctiva and tarsal plate. Methods. The upper eyelids of 11 healthy human volunteer subjects were everted, and laser scanning confocal microscopy was used to examine the various tissue layers of the palpebral conjunctiva and tarsal plate. Results The superficial and basal epithelial layers are composed of cells with gray cytoplasm and thick, light gray borders.Nuclei can not be seen. The stroma has a varied appearance; fibrous tissue is sometimes observed, interspersed with dark,amorphous lacunae, and crevases. Numerous single white or gray cells populate this tissue, and fine blood vessels are seen traversing the field. Occasional conjunctival microcysts and Langerhans cells are observed. The tarsal plate is dark and amorphous, and meibomian gland acini with convoluted borders are clearly observed. Acini are composed of an outer lining of large cuboidal cells, and differentiated secretory cells can be seen within the acini lumen. Conclusions Laser scanning confocal microscopy is capable of studying the human palpebral conjunctiva, tarsal plate, and acini of meibomian glands in vivo. The observations presented here may provide useful supplementary anatomical information relating to the morphology of this tissue.
Resumo:
Background: The aim of this work is to develop a more complete qualitative and quantitative understanding of the in vivo histology of the human bulbar conjunctiva. Methods: Laser scanning confocal microscopy (LSCM) was used to observe and measure morphological characteristics of the bulbar conjunctiva of 11 healthy human volunteer subjects. Results: The superficial epithelial layer of the bulbar conjunctiva is seen as a mass of small cell nuclei. Cell borders are sometimes visible. The light grey borders of basal epithelial cells are clearly visible, but nuclei can not be seen. The conjunctival stroma is comprised of a dense meshwork of white fibres, through which traverse blood vessels containing cellular elements. Orifices at the epithelial surface may represent goblet cells that have opened and expelled their contents. Goblet cells are also observed in the deeper epithelial layers, as well as conjunctival microcysts and mature forms of Langerhans cells. The bulbar conjunctiva has a mean thickness of 32.9 1.1 mm, and a superficial and basal epithelial cell density of 2212 782 and 2368 741 cells/ mm2, respectively. Overall goblet and mature Langerhans cell densities are 111 58 and 23 25 cells/mm2, respectively. Conclusions: LSCM is a powerful technique for studying the human bulbar conjunctiva in vivo and quantifying key aspects of cell morphology. The observations presented here may serve as a useful marker against which changes in conjunctival morphology due to disease, surgery, drug therapy or contact lens wear can be assessed.
Resumo:
Camera Botanica 1 - testing a design process (unrealised buildings). ---------- Sited in a highly biodiverse and bushfire prone heathlands on the South-east coast of Western Australia, Camera Botanica 1 is a test of a new design methodology for achieving ecologically sustainable architecture in biodiverse, bushfire prone landscapes. ---------- The design methods were intensively site-based with the author-designer conducting his own site surveys using high-end professional grade surveying equipment such as: Real Time Kinematic GPS (landform survey); Terrestrial laser scanning (vegetation survey); laser levelling and Total Station surveys (erection of scaffolds and contour lines). ---------- This was the first time, internationally, that terrestrial laser scanning was used to measure vegetation. These precise surveys enabled the construction of highly detailed models and drawings - a facility that has not been available prior to this technology. ---------- Designed for a real client and a real site - Camera Botanica 1 is a hypothetical design outcome which demonstrates the efficacy of a new design methodology and thus expands on knowledge of the applicability of new surveying technologies to the design of ecologically sustainable architecture in biodiverse landscapes.
Resumo:
Camera Botanica 2 - testing a design process (unrealised building). Sited in a highly biodiverse and bushfire prone heathlands on the South-east coast of Western Australia, Camera Botanica 2 is a test of a new design methodology for achieving ecologically sustainable architecture in biodiverse, bushfire prone landscapes. ---------- The design method was intensively site-based with the author-designer conducting his own site surveys using high-end professional grade surveying equipment such as: Real Time Kinematic GPS (landform survey); Terrestrial laser scanning (vegetation survey); laser levelling and Total Station surveys (erection of scaffolds and contour lines). ---------- This was the first time, internationally, that terrestrial laser scanning was used to measure vegetation. These precise surveys enabled the construction of highly detailed models and drawings - a facility that has not been available prior to this technology. ---------- Designed for a real client and a real site - Camera Botanica 2 is a hypothetical design outcome which demonstrates the efficacy of a new design methodology and thus expands on knowledge of the applicability of new surveying technologies to the design of ecologically sustainable architecture in biodiverse landscapes.
Resumo:
Purpose: The aim of this study was to investigate the capabilities of laser scanning confocal microscopy (LSCM) for undertaking qualitative and quantitative investigations of the response of the bulbar conjunctiva to contact lens wear. Methods: LSCM was used to observe and measure morphological characteristics of the bulbar conjunctiva of 11 asymptomatic soft contact lens wearers and 11 healthy volunteer subjects (controls). Results: The appearance of the bulbar conjunctiva is consistent with known histology of this tissue based on light and electron microscopy. The thickness of the bulbar conjunctival epithelium of lens wearers (30.9 ± 1.1 μm) was less than that of controls (32.9 ± 1.1 μm) (P < 0.0001). Superficial and basal bulbar conjunctival epithelial cell densities in contact lens wearers were 91% and 79% higher, respectively, than that in controls (P < 0.0001). No difference was observed in goblet and Langerhans cell density between lens wearers and controls. Conjunctival microcysts were observed in greater numbers, and were larger in size, in lens wearers compared with controls. Conclusions: The effects of contact lens wear on the human bulbar conjunctiva can be investigated effectively at a cellular level using LSCM. The observations in this study suggest that contact lens wear can induce changes in the bulbar conjunctiva such as epithelial thinning and accelerated formation and enlargement of microcysts, increased epithelial cell density, but has no impact on goblet or Langerhans cell density.
Resumo:
Collagen fibrillation within articular cartilage (AC) plays a key role in joint osteoarthritis (OA) progression and, therefore, studying collagen synthesis changes could be an indicator for use in the assessment of OA. Various staining techniques have been developed and used to determine the collagen network transformation under microscopy. However, because collagen and proteoglycan coexist and have the same index of refraction, conventional methods for specific visualization of collagen tissue is difficult. This study aimed to develop an advanced staining technique to distinguish collagen from proteoglycan and to determine its evolution in relation to OA progression using optical and laser scanning confocal microscopy (LSCM). A number of AC samples were obtained from sheep joints, including both healthy and abnormal joints with OA grades 1 to 3. The samples were stained using two different trichrome methods and immunohistochemistry (IHC) to stain both colourimetrically and with fluorescence. Using optical microscopy and LSCM, the present authors demonstrated that the IHC technique stains collagens only, allowing the collagen network to be separated and directly investigated. Fluorescently-stained IHC samples were also subjected to LSCM to obtain three-dimensional images of the collagen fibres. Changes in the collagen fibres were then correlated with the grade of OA in tissue. This study is the first to successfully utilize the IHC staining technique in conjunction with laser scanning confocal microscopy. This is a valuable tool for assessing changes to articular cartilage in OA.
Resumo:
The application of computer-aided design and manufacturing (CAD/CAM) techniques in the clinic is growing slowly but steadily. The ability to build patient-specific models based on medical imaging data offers major potential. In this work we report on the feasibility of employing laser scanning with CAD/CAM techniques to aid in breast reconstruction. A patient was imaged with laser scanning, an economical and facile method for creating an accurate digital representation of the breasts and surrounding tissues. The obtained model was used to fabricate a customized mould that was employed as an intra-operative aid for the surgeon performing autologous tissue reconstruction of the breast removed due to cancer. Furthermore, a solid breast model was derived from the imaged data and digitally processed for the fabrication of customized scaffolds for breast tissue engineering. To this end, a novel generic algorithm for creating porosity within a solid model was developed, using a finite element model as intermediate.
Resumo:
Research background: Communicating the diverse nature of multimodal practice is inherently difficult for the design-led research academic. Websites are an effective means of displaying images and text, but for the user/viewer the act of viewing is often random and disorienting, due to the non-linear means of accessing the information. This characteristic of websites limits the medium’s efficacy in regard to presenting an overarching philosophical standpoint or theme - the key driver behind most academic research. Research Contribution: This website: http://www.ianweirarchitect.com, presents a means of reconciling this problem by presenting a deceptively simple graphic and temporal layout, which limits the opportunity for the user/viewer to become disoriented and miss the key themes and issues that binds, the otherwise divergent, research material together. Research significance: http://www.ianweirarchitect.com, is a creative work that supplements Dr Ian Weir’s exhibition “Enacted Cartography” held in August 2012 in Brisbane and in August/September 2012 in Venice, Italy for the 13th International Architecture Exhibition (Venice Architecture Biennale). Dr Weir was selected by the Australian Institute of Architects to represent innovation in architectural practice for the Institute’s Formations: New Practices in Australian Architecture, exhibition and catalogue (of the same name) held in the Australian Pavilion, The Giardini, Venice. This website is creative output that compliments Dr Weir’s other multimodal outputs including photographic artworks, cartographic maps and architectural designs.