80 resultados para Large space structures (Astronautics)

em Queensland University of Technology - ePrints Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Effective focusing of electromagnetic (EM) energy to nanoscale regions is one of the major challenges in nano-photonics and plasmonics. The strong localization of the optical energy into regions much smaller than allowed by the diffraction limit, also called nanofocusing, offers promising applications in nano-sensor technology, nanofabrication, near-field optics or spectroscopy. One of the most promising solutions to the problem of efficient nanofocusing is related to surface plasmon propagation in metallic structures. Metallic tapered rods, commonly used as probes in near field microscopy and spectroscopy, are of a particular interest. They can provide very strong EM field enhancement at the tip due to surface plasmons (SP’s) propagating towards the tip of the tapered metal rod. A large number of studies have been devoted to the manufacturing process of tapered rods or tapered fibers coated by a metal film. On the other hand, structures such as metallic V-grooves or metal wedges can also provide strong electric field enhancements but manufacturing of these structures is still a challenge. It has been shown, however, that the attainable electric field enhancement at the apex in the V-groove is higher than at the tip of a metal tapered rod when the dissipation level in the metal is strong. Metallic V-grooves also have very promising characteristics as plasmonic waveguides. This thesis will present a thorough theoretical and numerical investigation of nanofocusing during plasmon propagation along a metal tapered rod and into a metallic V-groove. Optimal structural parameters including optimal taper angle, taper length and shape of the taper are determined in order to achieve maximum field enhancement factors at the tip of the nanofocusing structure. An analytical investigation of plasmon nanofocusing by metal tapered rods is carried out by means of the geometric optics approximation (GOA), which is also called adiabatic nanofocusing. However, GOA is applicable only for analysing tapered structures with small taper angles and without considering a terminating tip structure in order to neglect reflections. Rigorous numerical methods are employed for analysing non-adiabatic nanofocusing, by tapered rod and V-grooves with larger taper angles and with a rounded tip. These structures cannot be studied by analytical methods due to the presence of reflected waves from the taper section, the tip and also from (artificial) computational boundaries. A new method is introduced to combine the advantages of GOA and rigorous numerical methods in order to reduce significantly the use of computational resources and yet achieve accurate results for the analysis of large tapered structures, within reasonable calculation time. Detailed comparison between GOA and rigorous numerical methods will be carried out in order to find the critical taper angle of the tapered structures at which GOA is still applicable. It will be demonstrated that optimal taper angles, at which maximum field enhancements occur, coincide with the critical angles, at which GOA is still applicable. It will be shown that the applicability of GOA can be substantially expanded to include structures which could be analysed previously by numerical methods only. The influence of the rounded tip, the taper angle and the role of dissipation onto the plasmon field distribution along the tapered rod and near the tip will be analysed analytically and numerically in detail. It will be demonstrated that electric field enhancement factors of up to ~ 2500 within nanoscale regions are predicted. These are sufficient, for instance, to detect single molecules using surface enhanced Raman spectroscopy (SERS) with the tip of a tapered rod, an approach also known as tip enhanced Raman spectroscopy or TERS. The results obtained in this project will be important for applications for which strong local field enhancement factors are crucial for the performance of devices such as near field microscopes or spectroscopy. The optimal design of nanofocusing structures, at which the delivery of electromagnetic energy to the nanometer region is most efficient, will lead to new applications in near field sensors, near field measuring technology, or generation of nanometer sized energy sources. This includes: applications in tip enhanced Raman spectroscopy (TERS); manipulation of nanoparticles and molecules; efficient coupling of optical energy into and out of plasmonic circuits; second harmonic generation in non-linear optics; or delivery of energy to quantum dots, for instance, for quantum computations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The study of the electrodeposition of polycrystalline gold in aqueous solution is important from the viewpoint that in electrocatalysis applications ill-defined micro- and nanostructured surfaces are often employed. In this work, the morphology of gold was controlled by the electrodeposition potential and the introduction of Pb(CH3COO)2•3H2O into the plating solution to give either smooth or nanostructured gold crystallites or large dendritic structures which have been characterized by scanning electron microscopy (SEM). The latter structures were achieved through a novel in situ galvanic replacement of lead with AuCl4−(aq) during the course of gold electrodeposition. The electrochemical behavior of electrodeposited gold in the double layer region was studied in acidic and alkaline media and related to electrocatalytic performance for the oxidation of hydrogen peroxide and methanol. It was found that electrodeposited gold is a significantly better electrocatalyst than a polished gold electrode; however, performance is highly dependent on the chosen deposition parameters. The fabrication of a deposit with highly active surface states, comparable to those achieved at severely disrupted metal surfaces through thermal and electrochemical methods, does not result in the most effective electrocatalyst. This is due to significant premonolayer oxidation that occurs in the double layer region of the electrodeposited gold. In particular, in alkaline solution, where gold usually shows the most electrocatalytic activity, these active surface states may be overoxidized and inhibit the electrocatalytic reaction. However, the activity and morphology of an electrodeposited film can be tailored whereby electrodeposited gold that exhibits nanostructure within the crystallites on the surface demonstrated enhanced electrocatalytic activity compared to smaller smooth gold crystallites and larger dendritic structures in potential regions well within the double layer region.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Steel hollow sections used in structures such as bridges, buildings and space structures involve different strengthening techniques according to their structural purpose and shape of the structural member. One such technique is external bonding of CFRP sheets to steel tubes. The performance of CFRP strengthening for steel structures has been proven under static loading while limited studies have been conducted on their behaviour under impact loading. In this study, a comprehensive numerical investigation is carried out to evaluate the response of CFRP strengthened steel tubes under dynamic axial impact loading. Impact force, axial deformation impact velocities are studied. The results of the numerical investigations are validated by experimental results. Based on the developed finite element (FE) model several output parameters are discussed. The results show that CFRP wrapping is an effective strengthening technique to increase the axial dynamic load bearing capacity by increasing the stiffness of the steel tube.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Light gauge cold-formed steel sections have been developed as more economical building solutions to the alternative heavier hot-rolled sections in the commercial and residential markets. Cold-formed lipped channel beams (LCB), LiteSteel beams (LSB) and triangular hollow flange beams (THFB) are commonly used as flexural members such as floor joists and bearers while rectangular hollow flange beams (RHFB) are used in small scale housing developments through to large building structures. However, their shear capacities are determined based on conservative design rules. For the shear design of cold-formed steel beams, their elastic shear buckling strength and the potential post-buckling strength must be determined accurately. Hence experimental and numerical studies were conducted to investigate the shear behaviour and strength of LCBs, LSBs, THFBs and RHFBs. Improved shear design rules including the direct strength method (DSM) based design equations were developed to determine the ultimate shear capacities of these open and hollow flange steel beams. An improved equation for the higher elastic shear buckling coefficient of cold-formed steel beams was proposed based on finite element analysis results and included in the design equations. A new post-buckling coefficient was also introduced in the design equations to include the available post-buckling strength of cold-formed steel beams. This paper presents the details of this study on cold-formed steel beams subject to shear, and the results. It proposes generalised and improved shear design rules that can be used for any type of cold-formed steel beam.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Compositional data analysis usually deals with relative information between parts where the total (abundances, mass, amount, etc.) is unknown or uninformative. This article addresses the question of what to do when the total is known and is of interest. Tools used in this case are reviewed and analysed, in particular the relationship between the positive orthant of D-dimensional real space, the product space of the real line times the D-part simplex, and their Euclidean space structures. The first alternative corresponds to data analysis taking logarithms on each component, and the second one to treat a log-transformed total jointly with a composition describing the distribution of component amounts. Real data about total abundances of phytoplankton in an Australian river motivated the present study and are used for illustration.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Business Process Management (BPM) has increased in popularity and maturity in recent years. Large enterprises engage use process management approaches to model, manage and refine repositories of process models that detail the whole enterprise. These process models can run to the thousands in number, and may contain large hierarchies of tasks and control structures that become cumbersome to maintain. Tools are therefore needed to effectively traverse this process model space in an efficient manner, otherwise the repositories remain hard to use, and thus are lowered in their effectiveness. In this paper we analyse a range of BPM tools for their effectiveness in handling large process models. We establish that the present set of commercial tools is lacking in key areas regarding visualisation of, and interaction with, large process models. We then present six tool functionalities for the development of advanced business process visualisation and interaction, presenting a design for a tool that will exploit the latest advances in 2D and 3D computer graphics to enable fast and efficient search, traversal and modification of process models.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

“The Cube” is a unique facility that combines 48 large multi-touch screens and very large-scale projection surfaces to form one of the world’s largest interactive learning and engagement spaces. The Cube facility is part of the Queensland University of Technology’s (QUT) newly established Science and Engineering Centre, designed to showcase QUT’s teaching and research capabilities in the STEM (Science, Technology, Engineering, and Mathematics) disciplines. In this application paper we describe, the Cube, its technical capabilities, design rationale and practical day-to-day operations, supporting up to 70,000 visitors per week. Essential to the Cube’s operation are five interactive applications designed and developed in tandem with the Cube’s technical infrastructure. Each of the Cube’s launch applications was designed and delivered by an independent team, while the overall vision of the Cube was shepherded by a small executive team. The diversity of design, implementation and integration approaches pursued by these five teams provides some insight into the challenges, and opportunities, presented when working with large distributed interaction technologies. We describe each of these applications in order to discuss the different challenges and user needs they address, which types of interactions they support and how they utilise the capabilities of the Cube facility.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Application of 'advanced analysis' methods suitable for non-linear analysis and design of steel frame structures permits direct and accurate determination of ultimate system strengths, without resort to simplified elastic methods of analysis and semi-empirical specification equations. However, the application of advanced analysis methods has previously been restricted to steel frames comprising only compact sections that are not influenced by the effects of local buckling. A research project has been conducted with the aim of developing concentrated plasticity methods suitable for practical advanced analysis of steel frame structures comprising non-compact sections. A series of large-scale tests were performed in order to provide experimental results for verification of the new analytical models. Each of the test frames comprised non-compact sections, and exhibited significant local buckling behaviour prior to failure. This paper presents details of the test program including the test specimens, set-up and instrumentation, procedure, and results.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A novel method of spontaneous generation of new adipose tissue from an existing fat flap is described. A defined volume of fat flap based on the superficial inferior epigastric vascular pedicle in the rat was elevated and inset into a hollow plastic chamber implanted subcutaneously in the groin of the rat. The chamber walls were either perforated or solid and the chambers either contained poly(D,L-lactic-co-glycolic acid) (PLGA) sponge matrix or not. The contents were analyzed after being in situ for 6 weeks. The total volume of the flap tissue in all groups except the control groups, where the flap was not inserted into the chambers, increased significantly, especially in the perforated chambers (0.08 ± 0.007 mL baseline compared to 1.2 ± 0.08 mL in the intact ones). Volume analysis of individual component tissues within the flaps revealed that the adipocyte volume increased and was at a maximum in the chambers without PLGA, where it expanded from 0.04 ± 0.003 mL at insertion to 0.5 ± 0.08 mL (1250% increase) in the perforated chambers and to 0.16 ± 0.03 mL (400% increase) in the intact chambers. Addition of PLGA scaffolds resulted in less fat growth. Histomorphometric analysis rather than simple hypertrophy documented an increased number of adipocytes. The new tissue was highly vascularized and no fat necrosis or atypical changes were observed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

PURPOSE: This paper describes dynamic agent composition, used to support the development of flexible and extensible large-scale agent-based models (ABMs). This approach was motivated by a need to extend and modify, with ease, an ABM with an underlying networked structure as more information becomes available. Flexibility was also sought after so that simulations are set up with ease, without the need to program. METHODS: The dynamic agent composition approach consists in having agents, whose implementation has been broken into atomic units, come together at runtime to form the complex system representation on which simulations are run. These components capture information at a fine level of detail and provide a vast range of combinations and options for a modeller to create ABMs. RESULTS: A description of the dynamic agent composition is given in this paper, as well as details about its implementation within MODAM (MODular Agent-based Model), a software framework which is applied to the planning of the electricity distribution network. Illustrations of the implementation of the dynamic agent composition are consequently given for that domain throughout the paper. It is however expected that this approach will be beneficial to other problem domains, especially those with a networked structure, such as water or gas networks. CONCLUSIONS: Dynamic agent composition has many advantages over the way agent-based models are traditionally built for the users, the developers, as well as for agent-based modelling as a scientific approach. Developers can extend the model without the need to access or modify previously written code; they can develop groups of entities independently and add them to those already defined to extend the model. Users can mix-and-match already implemented components to form large-scales ABMs, allowing them to quickly setup simulations and easily compare scenarios without the need to program. The dynamic agent composition provides a natural simulation space over which ABMs of networked structures are represented, facilitating their implementation; and verification and validation of models is facilitated by quickly setting up alternative simulations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study of the veranda as seen through the eyes of Lady Maria Nugent and Michael Scott, alias Tom Cringle, clearly demonstrates the important role that the piazza, as it was then more commonly known, played in the life of early nineteenth century Caribbean colonial society. The popularity of the veranda throughout the region, in places influenced by different European as well as African cultures, and among all classes of people, suggests that the appeal of this typical feature was based on something more than architectural fashion. A place of relative comfort in hot weather, the veranda is also a space at the interface of indoors and outdoors which allows for a wide variety of uses, for solitary or small or large group activities, many of which were noted by Nugent and Scott. Quintessentially, the veranda is a place in which to relax and take pleasure, not least of which is the enjoyment of the prospect, be it a panoramic view, a peaceful garden or a lively street scene. Despite the great changes in the nature of society, in the Caribbean and in many other parts of the world, the veranda and related structures such as the balcony continue to play at least as important a role in daily life as they did two centuries ago. The veranda of today’s Californian or Australian bungalow, and the balcony of the apartment block in the residential area of the modern city are among the contemporary equivalents of the lower and upper piazzas of Lady Nugent’s and Tom Cringle’s day.