312 resultados para Land capability for agriculture
em Queensland University of Technology - ePrints Archive
Resumo:
The low stream salinity naturally in the Nebine-Mungallala Catchment, extent of vegetation retention, relatively low rainfall and high evaporation indicates that there is a relatively low risk of rising shallow groundwater tables in the catchment. Scalding caused by wind and water erosion exposing highly saline sub-soils is a more important regional issue, such as in the Homeboin area. Local salinisation associated with evaporation of bore water from free flowing bore drains and bores is also an important land degradation issue particularly in the lower Nebine, Wallam and Mungallala Creeks. The replacement of free flowing artesian bores and bore drains with capped bores and piped water systems under the Great Artesian Basin bore rehabilitation program is addressing local salinisation and scalding in the vicinity of bore drains and preventing the discharge of saline bore water to streams. Three principles for the prevention and control of salinity in the Nebine Mungallala catchment have been identified in this review: • Avoid salinity through avoiding scalds – i.e. not exposing the near-surface salt in landscape through land degradation; • Riparian zone management: Scalding often occurs within 200m or so of watering lines. Natural drainage lines are most likely to be overstocked, and thus have potential for scalding. Scalding begins when vegetation is removed, and without that binding cover, wind and water erosion exposes the subsoil; and • Monitoring of exposed or grazed soil areas. Based on the findings of the study, we make the following recommendations: 1. Undertake a geotechnical study of existing maps and other data to help identify and target areas most at risk of rising water tables causing salinity. Selected monitoring should then be established using piezometers as an early warning system. 2. SW NRM should financially support scald reclamation activity through its various funding programs. However, for this to have any validity in the overall management of salinity risk, it is critical that such funding require the landholder to undertake a salinity hazard/risk assessment of his/her holding. 3. A staged approach to funding may be appropriate. In the first instance, it would be reasonable to commence funding some pilot scald reclamation work with a view to further developing and piloting the farm hazard/risk assessment tools, and exploring how subsequent grazing management strategies could be incorporated within other extension and management activities. Once the details of the necessary farm level activities have been more clearly defined, and following the outcomes of the geotechnical review recommended above, a more comprehensive funding package could be rolled out to priority areas. 4. We recommend that best-practice grazing management training currently on offer should be enhanced with information about salinity risk in scald-prone areas, and ways of minimising the likelihood of scald formation. 5. We recommend that course material be developed for local students in Years 6 and 7, and that arrangements be made with local schools to present this information. Given the constraints of existing syllabi, we envisage that negotiations may have to be undertaken with the Department of Education in order for this material to be permitted to be used. We have contact with key people who could help in this if required. 6. We recommend that SW NRM continue to support existing extension activities such as Grazing Land Management and the Monitoring Made Easy tools. These aids should be able to be easily expanding to incorporate techniques for monitoring, addressing and preventing salinity and scalding. At the time of writing staff of SW NRM were actively involved in this process. It is important that these activities are adequately resourced to facilitate the uptake by landholders of the perception that salinity is an issue that needs to be addressed as part of everyday management. 7. We recommend that SW NRM consider investing in the development and deployment of a scenario-modelling learning support tool as part of the awareness raising and education activities. Secondary salinity is a dynamic process that results from ongoing human activity which mobilises and/or exposes salt occurring naturally in the landscape. Time scales can be short to very long, and the benefits of management actions can similarly have immediate or very long time frames. One way to help explain the dynamics of these processes is through scenario modelling.
Resumo:
Background: Periurban agriculture refers to agricultural practice occurring in areas with mixed rural and urban features. It is responsible 25% of the total gross value of economic production in Australia, despite only comprising 3% of the land used for agriculture. As populations grows and cities expand, they are constantly absorbing surrounding fringe areas, thus creating a new fringe, further from the city causing the periurban region to constantly shift outwards. Periurban regions are fundamental in the provision of fresh food to city populations and residential (and industrial) expansion taking over agricultural land has been noted as a major worldwide concern. Another major concern around the increase in urbanisation and resultant decrease in periurban agriculture is its potential effect on food security. Food security is the availability or access to nutritionally-adequate, culturally-relevant and safe foods in culturally-appropriate ways. Thus food insecurity occurs when access to or availability of these foods is compromised. There is an important level of connectedness between food security and food production and a decrease in periurban agriculture may have adverse effects on food security. A decrease in local, seasonal produce may result in a decrease in the availability of products and an increase in cost, as food must travel greater distances, incurring extra costs present at the consumer level. Currently, few Australian studies exist examining the change in periurban agriculture over time. Such information may prove useful for future health policy and interventions as well as infrastructure planning. The aim of this study is to investigate changes in periurban agriculture among capital cities of Australia. Methods: We compared data pertaining to selected commodities from the Australian Bureau of Statistics 2000-01 and 2005 -2006 Agricultural Census. This survey is distributed online or via mail on a five-yearly basis to approximately 175,000 Agricultural business to ascertain information on a range of factors, such as types of crops, livestock and land preparation practices. For the purpose of this study we compared the land being used for total crops, and cereal , oil seed, legume, fruit and vegetable crops separately. Data was analysed using repeated measures anova in spss. Results: Overall, total area available for crops in urbanised areas of Australia increased slightly by 1.8%. However, Sydney, Melbourne, Adelaide and Perth experienced decreases in the area available for fruit crops by 11%, 5%,and 4% respectively. Furthermore, Brisbane and Perth experienced decreases in land available for vegetable crops by 28% and 14% respectively. Finally, Sydney, Adelaide and Perth experienced decreases in land available for cereal crops by 10 – 79%. Conclusions: These findings suggest that population increases and consequent urban sprawl may be resulting in a decrease in peri-urban agriculture, specifically for several core food groups including fruit, breads and grain based foods. In doing so, access to or availability of these foods may be limited, and the cost of these foods is likely to increase, which may compromise food insecurity for certain sub-groups of the population.
Resumo:
Through a forest inventory in parts of the Amudarya river delta, Central Asia, we assessed the impact of ongoing forest degradation on the emissions of greenhouse gases (GHG) from soils. Interpretation of aerial photographs from 2001, combined with data on forest inventory in 1990 and field survey in 2003 provided comprehensive information about the extent and changes of the natural tugai riparian forests and tree plantations in the delta. The findings show an average annual deforestation rate of almost 1.3% and an even higher rate of land use change from tugai forests to land with only sparse tree cover. These annual rates of deforestation and forest degradation are higher than the global annual forest loss. By 2003, the tugai forest area had drastically decreased to about 60% compared to an inventory in 1990. Significant differences in soil GHG emissions between forest and agricultural land use underscore the impact of the ongoing land use change on the emission of soil-borne GHGs. The conversion of tugai forests into irrigated croplands will release 2.5 t CO2 equivalents per hectare per year due to elevated emissions of N2O and CH4. This demonstrates that the ongoing transformation of tugai forests into agricultural land-use systems did not only lead to a loss of biodiversity and of a unique ecosystem, but substantially impacts the biosphere-atmosphere exchange of GHG and soil C and N turnover processes.
Resumo:
As the world’s population is growing, so is the demand for agricultural products. However, natural nitrogen (N) fixation and phosphorus (P) availability cannot sustain the rising agricultural production, thus, the application of N and P fertilisers as additional nutrient sources is common. It is those anthropogenic activities that can contribute high amounts of organic and inorganic nutrients to both surface and groundwaters resulting in degradation of water quality and a possible reduction of aquatic life. In addition, runoff and sewage from urban and residential areas can contain high amounts of inorganic and organic nutrients which may also affect water quality. For example, blooms of the cyanobacterium Lyngbya majuscula along the coastline of southeast Queensland are an indicator of at least short term decreases of water quality. Although Australian catchments, including those with intensive forms of land use, show in general a low export of nutrients compared to North American and European catchments, certain land use practices may still have a detrimental effect on the coastal environment. Numerous studies are reported on nutrient cycling and associated processes on a catchment scale in the Northern Hemisphere. Comparable studies in Australia, in particular in subtropical regions are, however, limited and there is a paucity in the data, in particular for inorganic and organic forms of nitrogen and phosphorus; these nutrients are important limiting factors in surface waters to promote algal blooms. Therefore, the monitoring of N and P and understanding the sources and pathways of these nutrients within a catchment is important in coastal zone management. Although Australia is the driest continent, in subtropical regions such as southeast Queensland, rainfall patterns have a significant effect on runoff and thus the nutrient cycle at a catchment scale. Increasingly, these rainfall patterns are becoming variable. The monitoring of these climatic conditions and the hydrological response of agricultural catchments is therefore also important to reduce the anthropogenic effects on surface and groundwater quality. This study consists of an integrated hydrological–hydrochemical approach that assesses N and P in an environment with multiple land uses. The main aim is to determine the nutrient cycle within a representative coastal catchment in southeast Queensland, the Elimbah Creek catchment. In particular, the investigation confirms the influence associated with forestry and agriculture on N and P forms, sources, distribution and fate in the surface and groundwaters of this subtropical setting. In addition, the study determines whether N and P are subject to transport into the adjacent estuary and thus into the marine environment; also considered is the effect of local topography, soils and geology on N and P sources and distribution. The thesis is structured on four components individually reported. The first paper determines the controls of catchment settings and processes on stream water, riverbank sediment, and shallow groundwater N and P concentrations, in particular during the extended dry conditions that were encountered during the study. Temporal and spatial factors such as seasonal changes, soil character, land use and catchment morphology are considered as well as their effect on controls over distributions of N and P in surface waters and associated groundwater. A total number of 30 surface and 13 shallow groundwater sampling sites were established throughout the catchment to represent dominant soil types and the land use upstream of each sampling location. Sampling comprises five rounds and was conducted over one year between October 2008 and November 2009. Surface water and groundwater samples were analysed for all major dissolved inorganic forms of N and for total N. Phosphorus was determined in the form of dissolved reactive P (predominantly orthophosphate) and total P. In addition, extracts of stream bank sediments and soil grab samples were analysed for these N and P species. Findings show that major storm events, in particular after long periods of drought conditions, are the driving force of N cycling. This is expressed by higher inorganic N concentrations in the agricultural subcatchment compared to the forested subcatchment. Nitrate N is the dominant inorganic form of N in both the surface and groundwaters and values are significantly higher in the groundwaters. Concentrations in the surface water range from 0.03 to 0.34 mg N L..1; organic N concentrations are considerably higher (average range: 0.33 to 0.85 mg N L..1), in particular in the forested subcatchment. Average NO3-N in the groundwater has a range of 0.39 to 2.08 mg N L..1, and organic N averages between 0.07 and 0.3 mg N L..1. The stream bank sediments are dominated by organic N (range: 0.53 to 0.65 mg N L..1), and the dominant inorganic form of N is NH4-N with values ranging between 0.38 and 0.41 mg N L..1. Topography and soils, however, were not to have a significant effect on N and P concentrations in waters. Detectable phosphorus in the surface and groundwaters of the catchment is limited to several locations typically in the proximity of areas with intensive animal use; in soil and sediments, P is negligible. In the second paper, the stable isotopes of N (14N/15N) and H2O (16O/18O and 2H/H) in surface and groundwaters are used to identify sources of dissolved inorganic and organic N in these waters, and to determine their pathways within the catchment; specific emphasis is placed on the relation of forestry and agriculture. Forestry is predominantly concentrated in the northern subcatchment (Beerburrum Creek) while agriculture is mainly found in the southern subcatchment (Six Mile Creek). Results show that agriculture (horticulture, crops, grazing) is the main source of inorganic N in the surface waters of the agricultural subcatchment, and their isotopic signature shows a close link to evaporation processes that may occur during water storage in farm dams that are used for irrigation. Groundwaters are subject to denitrification processes that may result in reduced dissolved inorganic N concentrations. Soil organic matter delivers most of the inorganic N to the surface water in the forested subcatchment. Here, precipitation and subsequently runoff is the main source of the surface waters. Groundwater in this area is affected by agricultural processes. The findings also show that the catchment can attenuate the effects of anthropogenic land use on surface water quality. Riparian strips of natural remnant vegetation, commonly 50 to 100 m in width, act as buffer zones along the drainage lines in the catchment and remove inorganic N from the soil water before it enters the creek. These riparian buffer zones are common in most agricultural catchments of southeast Queensland and are indicated to reduce the impact of agriculture on stream water quality and subsequently on the estuary and marine environments. This reduction is expressed by a significant decrease in DIN concentrations from 1.6 mg N L..1 to 0.09 mg N L..1, and a decrease in the �15N signatures from upstream surface water locations downstream to the outlet of the agricultural subcatchment. Further testing is, however, necessary to confirm these processes. Most importantly, the amount of N that is transported to the adjacent estuary is shown to be negligible. The third and fourth components of the thesis use a hydrological catchment model approach to determine the water balance of the Elimbah Creek catchment. The model is then used to simulate the effects of land use on the water balance and nutrient loads of the study area. The tool that is used is the internationally widely applied Soil and Water Assessment Tool (SWAT). Knowledge about the water cycle of a catchment is imperative in nutrient studies as processes such as rainfall, surface runoff, soil infiltration and routing of water through the drainage system are the driving forces of the catchment nutrient cycle. Long-term information about discharge volumes of the creeks and rivers do, however, not exist for a number of agricultural catchments in southeast Queensland, and such information is necessary to calibrate and validate numerical models. Therefore, a two-step modelling approach was used to calibrate and validate parameters values from a near-by gauged reference catchment as starting values for the ungauged Elimbah Creek catchment. Transposing monthly calibrated and validated parameter values from the reference catchment to the ungauged catchment significantly improved model performance showing that the hydrological model of the catchment of interest is a strong predictor of the water water balance. The model efficiency coefficient EF shows that 94% of the simulated discharge matches the observed flow whereas only 54% of the observed streamflow was simulated by the SWAT model prior to using the validated values from the reference catchment. In addition, the hydrological model confirmed that total surface runoff contributes the majority of flow to the surface water in the catchment (65%). Only a small proportion of the water in the creek is contributed by total base-flow (35%). This finding supports the results of the stable isotopes 16O/18O and 2H/H, which show the main source of water in the creeks is either from local precipitation or irrigation waters delivered by surface runoff; a contribution from the groundwater (baseflow) to the creeks could not be identified using 16O/18O and 2H/H. In addition, the SWAT model calculated that around 68% of the rainfall occurring in the catchment is lost through evapotranspiration reflecting the prevailing long-term drought conditions that were observed prior and during the study. Stream discharge from the forested subcatchment was an order of magnitude lower than discharge from the agricultural Six Mile Creek subcatchment. A change in land use from forestry to agriculture did not significantly change the catchment water balance, however, nutrient loads increased considerably. Conversely, a simulated change from agriculture to forestry resulted in a significant decrease of nitrogen loads. The findings of the thesis and the approach used are shown to be of value to catchment water quality monitoring on a wider scale, in particular the implications of mixed land use on nutrient forms, distributions and concentrations. The study confirms that in the tropics and subtropics the water balance is affected by extended dry periods and seasonal rainfall with intensive storm events. In particular, the comprehensive data set of inorganic and organic N and P forms in the surface and groundwaters of this subtropical setting acquired during the one year sampling program may be used in similar catchment hydrological studies where these detailed information is missing. Also, the study concludes that riparian buffer zones along the catchment drainage system attenuate the transport of nitrogen from agricultural sources in the surface water. Concentrations of N decreased from upstream to downstream locations and were negligible at the outlet of the catchment.
Resumo:
A method of selecting land in any region of Queensland for offsetting purposes is devised, employing uniform standards. The procedure first requires that any core natural asset lands, Crown environmental lands, prime urban and agricultural lands, and highly contentious sites in the region be eliminated from consideration. Other land is then sought that is located between existing large reservations and the centre of greatest potential regional development/disturbance. Using the criteria of rehabilitation (rather than preservation) plus proximity to those officially defined Regional Ecosystems that are most threatened, adjacent sites that are described as ‘Cleared’ are identified in terms of agricultural land capability. Class IV lands – defined as those ‘which may be safely used for occasional cultivation with careful management’,2 ‘where it is favourably located for special usage’,3 and where it is ‘helpful to those who are interested in industry or regional planning or in reconstruction’4 – are examined for their appropriate area, for current tenure and for any conditions such as Mining Leases that may exist. The positive impacts from offsets on adjoining lands can then be designed to be significant; examples are also offered in respect of riparian areas and of Marine Parks. Criteria against which to measure performance for trading purposes include functional lift, with other case studies about this matter reported separately in this issue. The procedure takes no account of demand side economics (financial additionality), which requires commercial rather than environmental analysis.
Resumo:
The process of offsetting land against unavoidable disturbance of development sites in Queensland will benefit from a method that allows the best possible selection to be made of alternative lands. With site selection now advocated through a combination of Regional Ecosystem and Land Capability classifications state-wide, a case study has determined methods of assessing the functional lift – that is, measures of net environmental gain – of such action. Outcomes with potentially high functional lift are determined, that offer promise not only for endangered ecosystems but also for managing adjacent conservation reserves.
Resumo:
Efficient management of domestic wastewater is a primary requirement for human well being. Failure to adequately address issues of wastewater collection, treatment and disposal can lead to adverse public health and environmental impacts. The increasing spread of urbanisation has led to the conversion of previously rural land into urban developments and the more intensive development of semi urban areas. However the provision of reticulated sewerage facilities has not kept pace with this expansion in urbanisation. This has resulted in a growing dependency on onsite sewage treatment. Though considered only as a temporary measure in the past, these systems are now considered as the most cost effective option and have become a permanent feature in some urban areas. This report is the first of a series of reports to be produced and is the outcome of a research project initiated by the Brisbane City Council. The primary objective of the research undertaken was to relate the treatment performance of onsite sewage treatment systems with soil conditions at site, with the emphasis being on septic tanks. This report consists of a ‘state of the art’ review of research undertaken in the arena of onsite sewage treatment. The evaluation of research brings together significant work undertaken locally and overseas. It focuses mainly on septic tanks in keeping with the primary objectives of the project. This report has acted as the springboard for the later field investigations and analysis undertaken as part of the project. Septic tanks still continue to be used widely due to their simplicity and low cost. Generally the treatment performance of septic tanks can be highly variable due to numerous factors, but a properly designed, operated and maintained septic tank can produce effluent of satisfactory quality. The reduction of hydraulic surges from washing machines and dishwashers, regular removal of accumulated septage and the elimination of harmful chemicals are some of the practices that can improve system performance considerably. The relative advantages of multi chamber over single chamber septic tanks is an issue that needs to be resolved in view of the conflicting research outcomes. In recent years, aerobic wastewater treatment systems (AWTS) have been gaining in popularity. This can be mainly attributed to the desire to avoid subsurface effluent disposal, which is the main cause of septic tank failure. The use of aerobic processes for treatment of wastewater and the disinfection of effluent prior to disposal is capable of producing effluent of a quality suitable for surface disposal. However the field performance of these has been disappointing. A significant number of these systems do not perform to stipulated standards and quality can be highly variable. This is primarily due to houseowner neglect or ignorance of correct operational and maintenance procedures. The other problems include greater susceptibility to shock loadings and sludge bulking. As identified in literature a number of design features can also contribute to this wide variation in quality. The other treatment processes in common use are the various types of filter systems. These include intermittent and recirculating sand filters. These systems too have their inherent advantages and disadvantages. Furthermore as in the case of aerobic systems, their performance is very much dependent on individual houseowner operation and maintenance practices. In recent years the use of biofilters has attracted research interest and particularly the use of peat. High removal rates of various wastewater pollutants have been reported in research literature. Despite these satisfactory results, leachate from peat has been reported in various studies. This is an issue that needs further investigations and as such biofilters can still be considered to be in the experimental stage. The use of other filter media such as absorbent plastic and bark has also been reported in literature. The safe and hygienic disposal of treated effluent is a matter of concern in the case of onsite sewage treatment. Subsurface disposal is the most common and the only option in the case of septic tank treatment. Soil is an excellent treatment medium if suitable conditions are present. The processes of sorption, filtration and oxidation can remove the various wastewater pollutants. The subsurface characteristics of the disposal area are among the most important parameters governing process performance. Therefore it is important that the soil and topographic conditions are taken into consideration in the design of the soil absorption system. Seepage trenches and beds are the common systems in use. Seepage pits or chambers can be used where subsurface conditions warrant, whilst above grade mounds have been recommended for a variety of difficult site conditions. All these systems have their inherent advantages and disadvantages and the preferable soil absorption system should be selected based on site characteristics. The use of gravel as in-fill for beds and trenches is open to question. It does not contribute to effluent treatment and has been shown to reduce the effective infiltrative surface area. This is due to physical obstruction and the migration of fines entrained in the gravel, into the soil matrix. The surface application of effluent is coming into increasing use with the advent of aerobic treatment systems. This has the advantage that treatment is undertaken on the upper soil horizons, which is chemically and biologically the most effective in effluent renovation. Numerous research studies have demonstrated the feasibility of this practice. However the overriding criteria is the quality of the effluent. It has to be of exceptionally good quality in order to ensure that there are no resulting public health impacts due to aerosol drift. This essentially is the main issue of concern, due to the unreliability of the effluent quality from aerobic systems. Secondly, it has also been found that most householders do not take adequate care in the operation of spray irrigation systems or in the maintenance of the irrigation area. Under these circumstances surface disposal of effluent should be approached with caution and would require appropriate householder education and stringent compliance requirements. However despite all this, the efficiency with which the process is undertaken will ultimately rest with the individual householder and this is where most concern rests. Greywater too should require similar considerations. Surface irrigation of greywater is currently being permitted in a number of local authority jurisdictions in Queensland. Considering the fact that greywater constitutes the largest fraction of the total wastewater generated in a household, it could be considered to be a potential resource. Unfortunately in most circumstances the only pretreatment that is required to be undertaken prior to reuse is the removal of oil and grease. This is an issue of concern as greywater can considered to be a weak to medium sewage as it contains primary pollutants such as BOD material and nutrients and may also include microbial contamination. Therefore its use for surface irrigation can pose a potential health risk. This is further compounded by the fact that most householders are unaware of the potential adverse impacts of indiscriminate greywater reuse. As in the case of blackwater effluent reuse, there have been suggestions that greywater should also be subjected to stringent guidelines. Under these circumstances the surface application of any wastewater requires careful consideration. The other option available for the disposal effluent is the use of evaporation systems. The use of evapotranspiration systems has been covered in this report. Research has shown that these systems are susceptible to a number of factors and in particular to climatic conditions. As such their applicability is location specific. Also the design of systems based solely on evapotranspiration is questionable. In order to ensure more reliability, the systems should be designed to include soil absorption. The successful use of these systems for intermittent usage has been noted in literature. Taking into consideration the issues discussed above, subsurface disposal of effluent is the safest under most conditions. This is provided the facility has been designed to accommodate site conditions. The main problem associated with subsurface disposal is the formation of a clogging mat on the infiltrative surfaces. Due to the formation of the clogging mat, the capacity of the soil to handle effluent is no longer governed by the soil’s hydraulic conductivity as measured by the percolation test, but rather by the infiltration rate through the clogged zone. The characteristics of the clogging mat have been shown to be influenced by various soil and effluent characteristics. Secondly, the mechanisms of clogging mat formation have been found to be influenced by various physical, chemical and biological processes. Biological clogging is the most common process taking place and occurs due to bacterial growth or its by-products reducing the soil pore diameters. Biological clogging is generally associated with anaerobic conditions. The formation of the clogging mat provides significant benefits. It acts as an efficient filter for the removal of microorganisms. Also as the clogging mat increases the hydraulic impedance to flow, unsaturated flow conditions will occur below the mat. This permits greater contact between effluent and soil particles thereby enhancing the purification process. This is particularly important in the case of highly permeable soils. However the adverse impacts of the clogging mat formation cannot be ignored as they can lead to significant reduction in the infiltration rate. This in fact is the most common cause of soil absorption systems failure. As the formation of the clogging mat is inevitable, it is important to ensure that it does not impede effluent infiltration beyond tolerable limits. Various strategies have been investigated to either control clogging mat formation or to remediate its severity. Intermittent dosing of effluent is one such strategy that has attracted considerable attention. Research conclusions with regard to short duration time intervals are contradictory. It has been claimed that the intermittent rest periods would result in the aerobic decomposition of the clogging mat leading to a subsequent increase in the infiltration rate. Contrary to this, it has also been claimed that short duration rest periods are insufficient to completely decompose the clogging mat, and the intermediate by-products that form as a result of aerobic processes would in fact lead to even more severe clogging. It has been further recommended that the rest periods should be much longer and should be in the range of about six months. This entails the provision of a second and alternating seepage bed. The other concepts that have been investigated are the design of the bed to meet the equilibrium infiltration rate that would eventuate after clogging mat formation; improved geometry such as the use of seepage trenches instead of beds; serial instead of parallel effluent distribution and low pressure dosing of effluent. The use of physical measures such as oxidation with hydrogen peroxide and replacement of the infiltration surface have been shown to be only of short-term benefit. Another issue of importance is the degree of pretreatment that should be provided to the effluent prior to subsurface application and the influence exerted by pollutant loadings on the clogging mat formation. Laboratory studies have shown that the total mass loadings of BOD and suspended solids are important factors in the formation of the clogging mat. It has also been found that the nature of the suspended solids is also an important factor. The finer particles from extended aeration systems when compared to those from septic tanks will penetrate deeper into the soil and hence will ultimately cause a more dense clogging mat. However the importance of improved pretreatment in clogging mat formation may need to be qualified in view of other research studies. It has also shown that effluent quality may be a factor in the case of highly permeable soils but this may not be the case with fine structured soils. The ultimate test of onsite sewage treatment system efficiency rests with the final disposal of effluent. The implication of system failure as evidenced from the surface ponding of effluent or the seepage of contaminants into the groundwater can be very serious as it can lead to environmental and public health impacts. Significant microbial contamination of surface and groundwater has been attributed to septic tank effluent. There are a number of documented instances of septic tank related waterborne disease outbreaks affecting large numbers of people. In a recent incident, the local authority was found liable for an outbreak of viral hepatitis A and not the individual septic tank owners as no action had been taken to remedy septic tank failure. This illustrates the responsibility placed on local authorities in terms of ensuring the proper operation of onsite sewage treatment systems. Even a properly functioning soil absorption system is only capable of removing phosphorus and microorganisms. The nitrogen remaining after plant uptake will not be retained in the soil column, but will instead gradually seep into the groundwater as nitrate. Conditions for nitrogen removal by denitrification are not generally present in a soil absorption bed. Dilution by groundwater is the only treatment available for reducing the nitrogen concentration to specified levels. Therefore based on subsurface conditions, this essentially entails a maximum allowable concentration of septic tanks in a given area. Unfortunately nitrogen is not the only wastewater pollutant of concern. Relatively long survival times and travel distances have been noted for microorganisms originating from soil absorption systems. This is likely to happen if saturated conditions persist under the soil absorption bed or due to surface runoff of effluent as a result of system failure. Soils have a finite capacity for the removal of phosphorus. Once this capacity is exceeded, phosphorus too will seep into the groundwater. The relatively high mobility of phosphorus in sandy soils have been noted in the literature. These issues have serious implications in the design and siting of soil absorption systems. It is not only important to ensure that the system design is based on subsurface conditions but also the density of these systems in given areas is a critical issue. This essentially involves the adoption of a land capability approach to determine the limitations of an individual site for onsite sewage disposal. The most limiting factor at a particular site would determine the overall capability classification for that site which would also dictate the type of effluent disposal method to be adopted.
Resumo:
Water reuse through greywater irrigation has been adopted worldwide and has been proposed as a potential sustainable solution to increased water demands. Despite widespread adoption there is limited domestic knowledge of greywater reuse, there is no pressure to produce lowlevel phosphorus products and current guidelines and legislation, such as those in Australia, may be inadequate due to the lack of long-term data to provide a sound scientific basis. Research has clearly identified phosphorus as a potential environmental risk to waterways from many forms of irrigation. To assess the sustainability of greywater irrigation, this study compared four residential lots that had been irrigated with greywater for four years and adjacent non-irrigated lots that acted as controls. Each lot was monitored for the volume of greywater applied and selected physic-chemical water quality parameters and soil chemistry profiles were analysed. The non-irrigated soil profiles showed low levels of phosphorus and were used as controls. The Mechlich3 Phosphorus ratio (M3PSR) and Phosphate Environmental Risk Index (PERI) were used to determine the environmental risk of phosphorus leaching from the irrigated soils. Soil phosphorus concentrations were compared to theoretical greywater irrigation loadings. The measured phosphorus soil concentrations and the estimated greywater loadings were of similar magnitude. Sustainable greywater reuse is possible; however incorrect use and/or a lack of understanding of how household products affect greywater can result in phosphorus posing a significant risk to the environment.
Resumo:
Over the past 20 years the nature of rural valuation practice has required most rural valuers to undertake studies in both agriculture (farm management) and valuation, especially if carrying out valuation work for financial institutions. The additional farm financial and management information obtained by rural valuers exceeds that level of information required to value commercial, retail and industrial by the capitalisation of net rent/profit valuation method and is very similar to the level of information required for the valuation of commercial and retail property by the Discounted Cash Flow valuation method. On this basis the valuers specialising in rural valuation practice have the necessary skills and information to value rural properties by an income valuation method, which can focus on the long term environmental and economic sustainability of the property being valued. This paper will review the results of an extensive survey carried out by rural property valuers in Australia, in relation to the impact of farm management on rural property values and sustainable rural land use. A particular focus of the research relates to the increased awareness of the problems of rural land degradation in Australia and the subsequent impact such problems have on the productivity of rural land. These problems of sustainable land use have resulted in the need to develop an approach to rural valuation practice that allows the valuer to factor the past management practices on the subject rural property into the actual valuation figure. An analysis of the past farm management and the inclusion of this data into the valuation methodology provides a much more reliable indication of farm sustainable economic value than the existing direct comparison valuation methodology.
Resumo:
Rural land has not always been considered as a major long-term investment with both institutional investors and absentee owners in countries such as U.K. and Australia. Although rural land is included in both single asset and mixed asset portfolios in the U.S, it is not at the same levels as either commercial or industrial property. Rural land occupies over 50% of the total area of Australia, and comprises over 115,000 economic farm properties (excludes rural residential, hobby farms and rural lifestyle blocks. However, less than 1.6% of the total economic farm numbers are actually owned by corporate or institutional investors. This low level of corporate involvement in the Australian rural property market has limited both the investment performance research and inclusion of this rural land type in both property and mixed asset investment portfolios. In the U.S. rural land is also the most extensive real estate type based on total area occupied. The United States Department of Agriculture statistics (1998) show that in 1997 there were 2.06 million farms in the U.S., covering 968 million acres, with a total value of $912 billion and generating an annual income of $202 billion. The level of corporate ownership of farms in the U.S. is also higher than the level of corporate farm ownership in Australia. This high level of institutional ownership in rural land in U.S has provided the opportunity for the rural property asset class to be analysed in relation to it’s investment performance and possible role in a mixed asset or mixed property investment portfolio.
Resumo:
The importance of agriculture in many countries has tended to reduce as their economies move from a resource base to a manufacturing industry base. Although the level of agricultural production in first world countries has increased over the past two decades, this increase has generally been at a less significant rate compared to other sectors of the economies. Despite this increase in secondary and high technology industries, developed countries have continued to encourage and support their agricultural industries. This support has been through both tariffs and price support. Following pressure from developing economies, particularly through the World Trade Organisation (WTO), GATT Uruguay round and the Cairns Group Developed countries are now in various stages of winding back or de-coupling agricultural support within their economies. A major concern of farmers in protected agricultural markets is the impact of a free market trade in agricultural commodities on farm incomes and land values. This paper will analyse the capital and income performance of the NSW rural land market over the period 1990-1999. This analysis will be based on land use and will compare the total return from rural properties based on world agricultural commodity prices.
Resumo:
A large-scale, outdoor, pervasive computing system based on the Fleck hardware platform applies sensor network technology to farming. Comprising static and animal-borne mobile nodes, the system measures the state of a complex, dynamic system comprising climate, soil, pasture, and animals. This data supports prediction of the land's future state and improved management outcomes through closed-loop control. This article is part of a special issue, Building a Sensor-Rich World.
Resumo:
Background: The quality of stormwater runoff from ports is significant as it can be an important source of pollution to the marine environment. This is also a significant issue for the Port of Brisbane as it is located in an area of high environmental values. Therefore, it is imperative to develop an in-depth understanding of stormwater runoff quality to ensure that appropriate strategies are in place for quality improvement. ---------------- The Port currently has a network of stormwater sample collection points where event based samples together with grab samples are tested for a range of water quality parameters. Whilst this information provides a ‘snapshot’ of the pollutants being washed from the catchment/s, it does not allow for a quantifiable assessment of total contaminant loads being discharged to the waters of Moreton Bay. It also does not represent pollutant build-up and wash-off from the different land uses across a broader range of rainfall events which might be expected. As such, it is difficult to relate stormwater quality to different pollutant sources within the Port environment. ----------------- Consequently, this would make the source tracking of pollutants to receiving waters extremely difficult and in turn the ability to implement appropriate mitigation measures. Also, without this detailed understanding, the efficacy of the various stormwater quality mitigation measures implemented cannot be determined with certainty. --------------- Current knowledge on port stormwater runoff quality Currently, little knowledge exists with regards to the pollutant generation capacity specific to port land uses as these do not necessarily compare well with conventional urban industrial or commercial land use due to the specific nature of port activities such as inter-modal operations and cargo management. Furthermore, traffic characteristics in a port area are different to a conventional urban area. Consequently, as data inputs based on an industrial and commercial land uses for modelling purposes is questionable. ------------------ A comprehensive review of published research failed to locate any investigations undertaken with regards to pollutant build-up and wash-off for port specific land uses. Furthermore, there is very limited information made available by various ports worldwide about the pollution generation potential of their facilities. Published work in this area has essentially focussed on the water quality or environmental values in the receiving waters such as the downstream bay or estuary. ----------------- The Project: The research project is an outcome of the collaborative Partnership between the Port of Brisbane Corporation (POBC) and Queensland University of Technology (QUT). A key feature of this Partnership is the undertaking of ‘cutting edge’ research to strengthen the environmental custodianship of the Port area. This project aims to develop a port specific stormwater quality model to allow informed decision making in relation to stormwater quality improvement in the context of the increased growth of the Port. --------------- Stage 1 of the research project focussed on the assessment of pollutant build-up and wash-off using rainfall simulation from the current Port of Brisbane facilities with the longer-term objective of contributing to the development of ecological risk mitigation strategies for future expansion scenarios. Investigation of complex processes such as pollutant wash-off using naturally occurring rainfall events has inherent difficulties. These can be overcome using simulated rainfall for the investigations. ----------------- The deliverables for Stage 1 included the following: * Pollutant build-up and wash-off profiles for six primary land uses within the Port of Brisbane to be used for water quality model development. * Recommendations with regards to future stormwater quality monitoring and pollution mitigation measures. The outcomes are expected to deliver the following benefits to the Port of Brisbane: * The availability of Port specific pollutant build-up and wash-off data will enable the implementation of customised stormwater pollution mitigation strategies. * The water quality data collected would form the baseline data for a Port specific water quality model for mitigation and predictive purposes. * To be at the cutting-edge in terms of water quality management and environmental best practice in the context of port infrastructure. ---------------- Conclusions: The important conclusions from the study are: * It confirmed that the Port environment is unique in terms of pollutant characteristics and is not comparable to typical urban land uses. * For most pollutant types, the Port land uses exhibited lower pollutant concentrations when compared to typical urban land uses. * The pollutant characteristics varied across the different land uses and were not consistent in terms of the land use. Hence, the implementation of stereotypical structural water quality improvement devices could be of limited value. * The <150m particle size range was predominant in suspended solids for pollutant build-up as well as wash-off. Therefore, if suspended solids are targeted as the surrogate parameter for water quality improvement, this specific particle size range needs to be removed. ------------------- Recommendations: Based on the study results the following preliminary recommendations are made: * Due to the appreciable variation in pollutant characteristics for different port land uses, any water quality monitoring stations should preferably be located such that source areas can be easily identified. * The study results having identified significant pollutants for the different land uses should enable the development of a more customised water quality monitoring and testing regime targeting the critical pollutants. * A ‘one size fits all’ approach may not be appropriate for the different port land uses due to the varying pollutant characteristics. As such, pollution mitigation will need to be specifically tailored to suit the specific land use. * Any structural measures implemented for pollution mitigation to be effective should have the capability to remove suspended solids of size <150m. * Based on the results presented and the particularly the fact that the Port land uses cannot be compared to conventional urban land uses in relation to pollutant generation, consideration should be given to the development of a port specific water quality model.
Resumo:
Agriculture's contribution to radiative forcing is principally through its historical release of carbon in soil and vegetation to the atmosphere and through its contemporary release of nitrous oxide (N2O) and methane (CHM4). The sequestration of soil carbon in soils now depleted in soil organic matter is a well-known strategy for mitigating the buildup of CO2 in the atmosphere. Less well-recognized are other mitigation potentials. A full-cost accounting of the effects of agriculture on greenhouse gas emissions is necessary to quantify the relative importance of all mitigation options. Such an analysis shows nitrogen fertilizer, agricultural liming, fuel use, N2O emissions, and CH4 fluxes to have additional significant potential for mitigation. By evaluating all sources in terms of their global warming potential it becomes possible to directly evaluate greenhouse policy options for agriculture. A comparison of temperate and tropical systems illustrates some of these options.