44 resultados para Lamellar microstructure

em Queensland University of Technology - ePrints Archive


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The biomechanical or biophysical principles can be applied to study biological structures in their modern or fossil form. Bone is an important tissue in paleontological studies as it is a commonly preserved element in most fossil vertebrates, and can often allow its microstructures such as lacuna and canaliculi to be studied in detail. In this context, the principles of Fluid Mechanics and Scaling Laws have been previously applied to enhance the understanding of bone microarchitecture and their implications for the evolution of hydraulic structures to transport fluid. It has been shown that the microstructure of bone has evolved to maintain efficient transport between the nutrient supply and cells, the living components of the tissue. Application of the principle of minimal expenditure of energy to this analysis shows that the path distance comprising five or six lamellar regions represents an effective limit for fluid and solute transport between the nutrient supply and cells; beyond this threshold, hydraulic resistance in the network increases and additional energy expenditure is necessary for further transportation. This suggests an optimization of the size of bone’s building blocks (such as osteon or trabecular thickness) to meet the metabolic demand concomitant to minimal expenditure of energy. This biomechanical aspect of bone microstructure is corroborated from the ratio of osteon to Haversian canal diameters and scaling constants of several mammals considered in this study. This aspect of vertebrate bone microstructure and physiology may provide a basis of understanding of the form and function relationship in both extinct and extant taxa.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The intervertebral disc withstands large compressive loads (up to nine times bodyweight in humans) while providing flexibility to the spinal column. At a microstructural level, the outer sheath of the disc (the annulus fibrosus) comprises 12–20 annular layers of alternately crisscrossed collagen fibres embedded in a soft ground matrix. The centre of the disc (the nucleus pulposus) consists of a hydrated gel rich in proteoglycans. The disc is the largest avascular structure in the body and is of much interest biomechanically due to the high societal burden of disc degeneration and back pain. Although the disc has been well characterized at the whole joint scale, it is not clear how the disc tissue microstructure confers its overall mechanical properties. In particular, there have been conflicting reports regarding the level of attachment between adjacent lamellae in the annulus, and the importance of these interfaces to the overall integrity of the disc is unknown. We used a polarized light micrograph of the bovine tail disc in transverse cross-section to develop an image-based finite element model incorporating sliding and separation between layers of the annulus, and subjected the model to axial compressive loading. Validation experiments were also performed on four bovine caudal discs. Interlamellar shear resistance had a strong effect on disc compressive stiffness, with a 40% drop in stiffness when the interface shear resistance was changed from fully bonded to freely sliding. By contrast, interlamellar cohesion had no appreciable effect on overall disc mechanics. We conclude that shear resistance between lamellae confers disc mechanical resistance to compression, and degradation of the interlamellar interface structure may be a precursor to macroscopic disc degeneration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Stress- and strain-controlled tests of heat treated high-strength rail steel (Australian Standard AS1085.1) have been performed in order to improve the characterisation of the said material׳s ratcheting and fatigue wear behaviour. The hardness of the rail head material has also been studied and it has been found that hardness reduces considerably below four-millimetres from the rail top surface. Historically, researchers have used test coupons with circular cross-sections to conduct cyclic load tests. Such test coupons, typically five-millimetres in gauge diameter and ten‐millimetres in grip diameter, are usually taken from the rail head sample. When there is considerable variation of material properties over the cross-section it becomes likely that localised properties of the rail material will be missed. In another case from the literature, disks 47 mm in diameter for a twin-disk rolling contact test machine were obtained directly from the rail sample and used to validate ratcheting and rolling contact fatigue wear models. The question arises: How accurate are such tests, especially when large material property gradients exist? In this research paper, the effects of rail sampling location on the ratcheting behaviour of AS1085.1 rail steel were investigated using rectangular-shaped specimens obtained at four different depths to observe their respective cyclic plasticity behaviour. The microstructural features of the test coupons were also analysed, especially the pearlite inter-lamellar spacing which showed strong correlation with both hardness and cyclic plasticity behaviour of the material. This work ultimately provides new data and testing methodology to aid the selection of valid parameters for material constitutive models to better understand rail surface ratcheting and wear.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Earlier studies have shown that the influence of fixation stability on bone healing diminishes with advanced age. The goal of this study was to unravel the relationship between mechanical stimulus and age on callus competence at a tissue level. Using 3D in vitro micro-computed tomography derived metrics, 2D in vivo radiography, and histology, we investigated the influences of age and varying fixation stability on callus size, geometry, microstructure, composition, remodeling, and vascularity. Compared were four groups with a 1.5-mm osteotomy gap in the femora of Sprague–Dawley rats: Young rigid (YR), Young semirigid (YSR), Old rigid (OR), Old semirigid (OSR). Hypothesis was that calcified callus microstructure and composition is impaired due to the influence of advanced age, and these individuals would show a reduced response to fixation stabilities. Semirigid fixations resulted in a larger ΔCSA (Callus cross-sectional area) compared to rigid groups. In vitro μCT analysis at 6 weeks postmortem showed callus bridging scores in younger animals to be superior than their older counterparts (pb0.01). Younger animals showed (i) larger callus strut thickness (pb0.001), (ii) lower perforation in struts (pb0.01), and (iii) higher mineralization of callus struts (pb0.001). Callus mineralization was reduced in young animals with semirigid fracture fixation but remained unaffected in the aged group. While stability had an influence, age showed none on callus size and geometry of callus. With no differences observed in relative osteoid areas in the callus ROI, old as well as semirigid fixated animals showed a higher osteoclast count (pb0.05). Blood vessel density was reduced in animals with semirigid fixation (pb0.05). In conclusion, in vivo monitoring indicated delayed callus maturation in aged individuals. Callus bridging and callus competence (microstructure and mineralization) were impaired in individuals with an advanced age. This matched with increased bone resorption due to higher osteoclast numbers. Varying fixator configurations in older individuals did not alter the dominant effect of advanced age on callus tissue mineralization, unlike in their younger counterparts. Age-associated influences appeared independent from stability. This study illustrates the dominating role of osteoclastic activity in age-related impaired healing, while demonstrating the optimization of fixation parameters such as stiffness appeared to be less effective in influencing healing in aged individuals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microstructural (fabric, forces and composition) changes due to hydrocarbon contamination in a clay soil were studied using Scanning Electron Microscope (micro-fabric analysis), Atomic Force Microscope (forces measurement) and sedimentation bench test (particle size measurements). The non-polluted and polluted glacial till from north-eastern Poland (area of a fuel terminal) were used for the study. Electrostatic repelling forces for the polluted sample were much lower than for the non-polluted sample. In comparison to non-polluted sample, the polluted sample exhibited lower electric charge, attractive forces on approach and strong adhesion on retrieve. The results of the sedimentation tests indicate that clay particles form larger aggregates and settle out of the suspension rapidly in diesel oil. In non-polluted soil, the fabric is strongly aggregated – densely packed, dominate the face-to-face and edge-to-edge types of contacts, clay film tightly adheres to the surface of larger grains and interparticle pores are more common. In polluted soil, the clay matrix is less aggregated – loosely packed, dominate the edge-to-face types of contacts and inter-micro-aggregate pores are more frequent. Substantial differences were observed in the morphometric and geometrical parameters of pore space. The polluted soil micro-fabric proved to be more isotropic and less oriented than in non-polluted soil. The polluted soil, in which electrostatic forces were suppressed by hydrocarbon interaction, displays more open porosity and larger voids than non-polluted soil, which is characterized by occurrence of the strong electrostatic interaction between clay particles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Poly (lactide-co-glycolide) (PLGA) microspheres have been used for regenerative medicine due to their ability for drug delivery and generally good biocompatibility, but they lack adequate bioactivity for bone repair application. CaSiO3 (CS) has been proposed as a new class of material suitable for bone tissue repair due to its excellent bioactivity. In this study, we set out to incorporate CS into PLGA microspheres to investigate how the phase structure (amorphous and crystal) of CS influences the in vitro and in vivo bioactivity of the composite microspheres, with a view to the application for bone regeneration. X-ray diffraction (XRD), N2 adsorption-desorption analysis and scanning electron microscopy (SEM) were used to analyze the phase structure, surface area/pore volume, and microstructure of amorphous CS (aCS) and crystal CS (cCS), as well as their composite microspheres. The in vitro bioactivity of aCS and cCS – PLGA microspheres was evaluated by investigating their apatite-mineralization ability in simulated body fluids (SBF) and the viability of human bone mesenchymal stem cells (BMSCs). The in vivo bioactivity was investigated by measuring their de novo bone-formation ability. The results showed that the incorporation of both aCS and cCS enhanced the in vitro and in vivo bioactivity of PLGA microspheres. cCS/PLGA microspheres improved better in vitro BMSC viability and de novo bone-formation ability in vivo, compared to aCS/PLGA microspheres. Our study indicates that controlling the phase structure of CS is a promising method to modulate the bioactivity of polymer microsphere system for potential bone tissue regeneration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Endocrinopathic laminitis is frequently associated with hyperinsulinaemia but the role of glucose in the pathogenesis of the disease has not been fully investigated. This study aimed to determine the endogenous insulin response to a quantity of glucose equivalent to that administered during a laminitis-inducing, euglycaemic, hyperinsulinaemic clamp, over 48. h in insulin-sensitive Standardbred racehorses. In addition, the study investigated whether glucose infusion, in the absence of exogenous insulin administration, would result in the development of clinical and histopathological evidence of laminitis. Glucose (50% dextrose) was infused intravenously at a rate of 0.68 mL/kg/h for 48. h in treated horses (n = 4) and control horses (n = 3) received a balanced electrolyte solution (0.68 mL/kg/h). Lamellar histology was examined at the conclusion of the experiment. Horses in the treatment group were insulin sensitive (M value 0.039 ± 0.0012. mmol/kg/min and M-to-I ratio (100×) 0.014 ± 0.002) as determined by an approximated hyperglycaemic clamp. Treated horses developed glycosuria, hyperglycaemia (10.7 ± 0.78. mmol/L) and hyperinsulinaemia (208 ± 26.1. μIU/mL), whereas control horses did not. None of the horses became lame as a consequence of the experiment but all of the treated horses developed histopathological evidence of laminitis in at least one foot. Combined with earlier studies, the results showed that laminitis may be induced by either insulin alone or a combination of insulin and glucose, but that it is unlikely to be due to a glucose overload mechanism. Based on the histopathological data, the potential threshold for insulin toxicity (i.e. laminitis) in horses may be at or below a serum concentration of ∼200. μIU/mL.