22 resultados para Laguerre polynomials

em Queensland University of Technology - ePrints Archive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The refractive error of a human eye varies across the pupil and therefore may be treated as a random variable. The probability distribution of this random variable provides a means for assessing the main refractive properties of the eye without the necessity of traditional functional representation of wavefront aberrations. To demonstrate this approach, the statistical properties of refractive error maps are investigated. Closed-form expressions are derived for the probability density function (PDF) and its statistical moments for the general case of rotationally-symmetric aberrations. A closed-form expression for a PDF for a general non-rotationally symmetric wavefront aberration is difficult to derive. However, for specific cases, such as astigmatism, a closed-form expression of the PDF can be obtained. Further, interpretation of the distribution of the refractive error map as well as its moments is provided for a range of wavefront aberrations measured in real eyes. These are evaluated using a kernel density and sample moments estimators. It is concluded that the refractive error domain allows non-functional analysis of wavefront aberrations based on simple statistics in the form of its sample moments. Clinicians may find this approach to wavefront analysis easier to interpret due to the clinical familiarity and intuitive appeal of refractive error maps.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ophthalmic wavefront sensors typically measure wavefront slope, from which wavefront phase is reconstructed. We show that ophthalmic prescriptions (in power-vector format) can be obtained directly from slope measurements without wavefront reconstruction. This is achieved by fitting the measurement data with a new set of orthonormal basis functions called Zernike radial slope polynomials. Coefficients of this expansion can be used to specify the ophthalmic power vector using explicit formulas derived by a variety of methods. Zernike coefficients for wavefront error can be recovered from the coefficients of radial slope polynomials, thereby offering an alternative way to perform wavefront reconstruction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recently, several classes of permutation polynomials of the form (x2 + x + δ)s + x over F2m have been discovered. They are related to Kloosterman sums. In this paper, the permutation behavior of polynomials of the form (xp − x + δ)s + L(x) over Fpm is investigated, where L(x) is a linearized polynomial with coefficients in Fp. Six classes of permutation polynomials on F2m are derived. Three classes of permutation polynomials over F3m are also presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recurrence relations in mathematics form a very powerful and compact way of looking at a wide range of relationships. Traditionally, the concept of recurrence has often been a difficult one for the secondary teacher to convey to students. Closely related to the powerful proof technique of mathematical induction, recurrences are able to capture many relationships in formulas much simpler than so-called direct or closed formulas. In computer science, recursive coding often has a similar compactness property, and, perhaps not surprisingly, suffers from similar problems in the classroom as recurrences: the students often find both the basic concepts and practicalities elusive. Using models designed to illuminate the relevant principles for the students, we offer a range of examples which use the modern spreadsheet environment to powerfully illustrate the great expressive and computational power of recurrences.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

High-speed videokeratoscopy is an emerging technique that enables study of the corneal surface and tear-film dynamics. Unlike its static predecessor, this new technique results in a very large amount of digital data for which storage needs become significant. We aimed to design a compression technique that would use mathematical functions to parsimoniously fit corneal surface data with a minimum number of coefficients. Since the Zernike polynomial functions that have been traditionally used for modeling corneal surfaces may not necessarily correctly represent given corneal surface data in terms of its optical performance, we introduced the concept of Zernike polynomial-based rational functions. Modeling optimality criteria were employed in terms of both the rms surface error as well as the point spread function cross-correlation. The parameters of approximations were estimated using a nonlinear least-squares procedure based on the Levenberg-Marquardt algorithm. A large number of retrospective videokeratoscopic measurements were used to evaluate the performance of the proposed rational-function-based modeling approach. The results indicate that the rational functions almost always outperform the traditional Zernike polynomial approximations with the same number of coefficients.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: All currently considered parametric models used for decomposing videokeratoscopy height data are viewercentered and hence describe what the operator sees rather than what the surface is. The purpose of this study was to ascertain the applicability of an object-centered representation to modeling of corneal surfaces. Methods: A three-dimensional surface decomposition into a series of spherical harmonics is considered and compared with the traditional Zernike polynomial expansion for a range of videokeratoscopic height data. Results: Spherical harmonic decomposition led to significantly better fits to corneal surfaces (in terms of the root mean square error values) than the corresponding Zernike polynomial expansions with the same number of coefficients, for all considered corneal surfaces, corneal diameters, and model orders. Conclusions: Spherical harmonic decomposition is a viable alternative to Zernike polynomial decomposition. It achieves better fits to videokeratoscopic height data and has the advantage of an object-centered representation that could be particularly suited to the analysis of multiple corneal measurements.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A common optometric problem is to specify the eye’s ocular aberrations in terms of Zernike coefficients and to reduce that specification to a prescription for the optimum sphero-cylindrical correcting lens. The typical approach is first to reconstruct wavefront phase errors from measurements of wavefront slopes obtained by a wavefront aberrometer. This paper applies a new method to this clinical problem that does not require wavefront reconstruction. Instead, we base our analysis of axial wavefront vergence as inferred directly from wavefront slopes. The result is a wavefront vergence map that is similar to the axial power maps in corneal topography and hence has a potential to be favoured by clinicians. We use our new set of orthogonal Zernike slope polynomials to systematically analyse details of the vergence map analogous to Zernike analysis of wavefront maps. The result is a vector of slope coefficients that describe fundamental aberration components. Three different methods for reducing slope coefficients to a spherocylindrical prescription in power vector forms are compared and contrasted. When the original wavefront contains only second order aberrations, the vergence map is a function of meridian only and the power vectors from all three methods are identical. The differences in the methods begin to appear as we include higher order aberrations, in which case the wavefront vergence map is more complicated. Finally, we discuss the advantages and limitations of vergence map representation of ocular aberrations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: To ascertain the effectiveness of object-centered three-dimensional representations for the modeling of corneal surfaces. Methods: Three-dimensional (3D) surface decomposition into series of basis functions including: (i) spherical harmonics, (ii) hemispherical harmonics, and (iii) 3D Zernike polynomials were considered and compared to the traditional viewer-centered representation of two-dimensional (2D) Zernike polynomial expansion for a range of retrospective videokeratoscopic height data from three clinical groups. The data were collected using the Medmont E300 videokeratoscope. The groups included 10 normal corneas with corneal astigmatism less than −0.75 D, 10 astigmatic corneas with corneal astigmatism between −1.07 D and 3.34 D (Mean = −1.83 D, SD = ±0.75 D), and 10 keratoconic corneas. Only data from the right eyes of the subjects were considered. Results: All object-centered decompositions led to significantly better fits to corneal surfaces (in terms of the RMS error values) than the corresponding 2D Zernike polynomial expansions with the same number of coefficients, for all considered corneal surfaces, corneal diameters (2, 4, 6, and 8 mm), and model orders (4th to 10th radial orders) The best results (smallest RMS fit error) were obtained with spherical harmonics decomposition which lead to about 22% reduction in the RMS fit error, as compared to the traditional 2D Zernike polynomials. Hemispherical harmonics and the 3D Zernike polynomials reduced the RMS fit error by about 15% and 12%, respectively. Larger reduction in RMS fit error was achieved for smaller corneral diameters and lower order fits. Conclusions: Object-centered 3D decompositions provide viable alternatives to traditional viewer-centered 2D Zernike polynomial expansion of a corneal surface. They achieve better fits to videokeratoscopic height data and could be particularly suited to the analysis of multiple corneal measurements, where there can be slight variations in the position of the cornea from one map acquisition to the next.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Corneal-height data are typically measured with videokeratoscopes and modeled using a set of orthogonal Zernike polynomials. We address the estimation of the number of Zernike polynomials, which is formalized as a model-order selection problem in linear regression. Classical information-theoretic criteria tend to overestimate the corneal surface due to the weakness of their penalty functions, while bootstrap-based techniques tend to underestimate the surface or require extensive processing. In this paper, we propose to use the efficient detection criterion (EDC), which has the same general form of information-theoretic-based criteria, as an alternative to estimating the optimal number of Zernike polynomials. We first show, via simulations, that the EDC outperforms a large number of information-theoretic criteria and resampling-based techniques. We then illustrate that using the EDC for real corneas results in models that are in closer agreement with clinical expectations and provides means for distinguishing normal corneal surfaces from astigmatic and keratoconic surfaces.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: Investigations of foveal aberrations assume circular pupils. However, the pupil becomes increasingly elliptical with increase in visual field eccentricity. We address this and other issues concerning peripheral aberration specification. Methods: One approach uses an elliptical pupil similar to the actual pupil shape, stretched along its minor axis to become a circle so that Zernike circular aberration polynomials may be used. Another approach uses a circular pupil whose diameter matches either the larger or smaller dimension of the elliptical pupil. Pictorial presentation of aberrations, influence of wavelength on aberrations, sign differences between aberrations for fellow eyes, and referencing position to either the visual field or the retina are considered. Results: Examples show differences between the two approaches. Each has its advantages and disadvantages, but there are ways to compensate for most disadvantages. Two representations of data are pupil aberration maps at each position in the visual field and maps showing the variation in individual aberration coefficients across the field. Conclusions: Based on simplicity of use, adequacy of approximation, possible departures of off-axis pupils from ellipticity, and ease of understanding by clinicians, the circular pupil approach is preferable to the stretched elliptical approach for studies involving field angles up to 30 deg.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In 1980 Alltop produced a family of cubic phase sequences that nearly meet the Welch bound for maximum non-peak correlation magnitude. This family of sequences were shown by Wooters and Fields to be useful for quantum state tomography. Alltop’s construction used a function that is not planar, but whose difference function is planar. In this paper we show that Alltop type functions cannot exist in fields of characteristic 3 and that for a known class of planar functions, x^3 is the only Alltop type function.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, the spectral approximations are used to compute the fractional integral and the Caputo derivative. The effective recursive formulae based on the Legendre, Chebyshev and Jacobi polynomials are developed to approximate the fractional integral. And the succinct scheme for approximating the Caputo derivative is also derived. The collocation method is proposed to solve the fractional initial value problems and boundary value problems. Numerical examples are also provided to illustrate the effectiveness of the derived methods.