159 resultados para Knock out
em Queensland University of Technology - ePrints Archive
Resumo:
Prostate cancer (PCa) and benign prostatic hyperplasia (BPH) are androgen-dependent diseases commonly treated by inhibiting androgen action. However, androgen ablation or castration fail to target androgen-independent cells implicated in disease etiology and recurrence. Mechanistically different to castration, this study shows beneficial proapoptotic actions of estrogen receptor–β (ERβ) in BPH and PCa. ERβ agonist induces apoptosis in prostatic stromal, luminal and castrate-resistant basal epithelial cells of estrogen-deficient aromatase knock-out mice. This occurs via extrinsic (caspase-8) pathways, without reducing serum hormones, and perturbs the regenerative capacity of the epithelium. TNFα knock-out mice fail to respond to ERβ agonist, demonstrating the requirement for TNFα signaling. In human tissues, ERβ agonist induces apoptosis in stroma and epithelium of xenografted BPH specimens, including in the CD133+ enriched putative stem/progenitor cells isolated from BPH-1 cells in vitro. In PCa, ERβ causes apoptosis in Gleason Grade 7 xenografted tissues and androgen-independent cells lines (PC3 and DU145) via caspase-8. These data provide evidence of the beneficial effects of ERβ agonist on epithelium and stroma of BPH, as well as androgen-independent tumor cells implicated in recurrent disease. Our data are indicative of the therapeutic potential of ERβ agonist for treatment of PCa and/or BPH with or without androgen withdrawal.
Resumo:
Ross River Virus has caused reported outbreaks of epidemic polyarthritis, a chronic debilitating disease associated with significant long-term morbidity in Australia and the Pacific region since the 1920s. To address this public health concern, a formalin- and UV-inactivated whole virus vaccine grown in animal protein-free cell culture was developed and tested in preclinical studies to evaluate immunogenicity and efficacy in animal models. After active immunizations, the vaccine dose-dependently induced antibodies and protected adult mice from viremia and interferon α/β receptor knock-out (IFN-α/βR(-/-)) mice from death and disease. In passive transfer studies, administration of human vaccinee sera followed by RRV challenge protected adult mice from viremia and young mice from development of arthritic signs similar to human RRV-induced disease. Based on the good correlation between antibody titers in human sera and protection of animals, a correlate of protection was defined. This is of particular importance for the evaluation of the vaccine because of the comparatively low annual incidence of RRV disease, which renders a classical efficacy trial impractical. Antibody-dependent enhancement of infection, did not occur in mice even at low to undetectable concentrations of vaccine-induced antibodies. Also, RRV vaccine-induced antibodies were partially cross-protective against infection with a related alphavirus, Chikungunya virus, and did not enhance infection. Based on these findings, the inactivated RRV vaccine is expected to be efficacious and protect humans from RRV disease
Resumo:
The concept of the cellular glycoprotein vitronectin acts as a biological ‘glue’ and key controller of mammalian tissue repair and remodelling activity is emerging from nearly 50 years of experimental in vitro and in vivo data. Unexpectedly, the vitronectin-knock-out mouse was found to be viable and to have largely normal phenotype. However, diligent observation revealed that the VN-KO animal exhibits delayed coagulation and poor wound healing. This is interpreted to indicate that vitronectin occupies a role in the earliest events of thrombogenesis and tissue repair. That role is as a foundation upon which the thrombus grows in an organised structure. In addition to closing the wound, the thrombus also serves to protect the underlying tissue from oxidation, is a reservoir of mitogens and tissue repair mediators and provides a provisional scaffold for the repairing tissue. In the absence of vitronectin (e.g. VN-KO animal) this cascade is disrupted before it begins. Our data demonstrates that a wide variety of biologically active species associate with VN. While initial studies were focused on mitogens, other classes of bioactives (e.g. glycosaminoglycans, metalloproteinases) are now also known to specifically interact with VN. Many of these interactions are long-lived, often resulting in multi-protein complexes, while others are stable for prolonged periods. Multiprotein complexes provide several advantages: prolonging molecular interaction; sustaining local concentrations, facilitating co-stimulation of cell surface receptors and thereby enhancing cellular / biological responses. We contend that these, or equivalent, multi-protein complexes mediate vitronectin functionality in vivo. It is also likely that many of the species demonstrated to associate with vitronectin in vitro, also associate with vitronectin in vivo in similar multi-protein complexes. Thus the predominant biological function of vitronectin is that of a master controller of the extracellular environment; informing, and possibly instructing cells ‘where’ to behave, ‘when’ to behave, and ‘how’ to behave (i.e. appropriately for the current circumstance).
Resumo:
It is well established that calcitonin is a potent inhibitor of bone resorption; however, a physiological role for calcitonin acting through its cognate receptor, the calcitonin receptor (CTR), has not been identified. Data from previous genetically modified animal models have recognized a possible role for calcitonin and the CTR in controlling bone formation; however, interpretation of these data are complicated, in part because of their mixed genetic background. Therefore, to elucidate the physiological role of the CTR in calcium and bone metabolism, we generated a viable global CTR knockout (KO) mouse model using the Cre/loxP system, in which the CTR is globally deleted by >94% but <100%. Global CTRKOs displayed normal serum ultrafiltrable calcium levels and a mild increase in bone formation in males, showing that the CTR plays a modest physiological role in the regulation of bone and calcium homeostasis in the basal state in mice. Furthermore, the peak in serum total calcium after calcitriol [1,25(OH)2D3]-induced hypercalcemia was substantially greater in global CTRKOs compared with controls. These data provide strong evidence for a biological role of the CTR in regulating calcium homeostasis in states of calcium stress.
Resumo:
A hippocampal-CA3 memory model was constructed with PGENESIS, a recently developed version of GENESIS that allows for distributed processing of a neural network simulation. A number of neural models of the human memory system have identified the CA3 region of the hippocampus as storing the declarative memory trace. However, computational models designed to assess the viability of the putative mechanisms of storage and retrieval have generally been too abstract to allow comparison with empirical data. Recent experimental evidence has shown that selective knock-out of NMDA receptors in the CA1 of mice leads to reduced stability of firing specificity in place cells. Here a similar reduction of stability of input specificity is demonstrated in a biologically plausible neural network model of the CA3 region, under conditions of Hebbian synaptic plasticity versus an absence of plasticity. The CA3 region is also commonly associated with seizure activity. Further simulations of the same model tested the response to continuously repeating versus randomized nonrepeating input patterns. Each paradigm delivered input of equal intensity and duration. Non-repeating input patterns elicited a greater pyramidal cell spike count. This suggests that repetitive versus non-repeating neocortical inpus has a quantitatively different effect on the hippocampus. This may be relevant to the production of independent epileptogenic zones and the process of encoding new memories.
Resumo:
Australia’s mass market fashion labels have traditionally benefitted from their peripheral location to the world’s fashion centres. Operating a season behind, Australian mass market designers and buyers were well-placed to watch trends play out overseas before testing them in the Australian marketplace. For this reason, often a designer’s role was to source and oversee the manufacture of ‘knock-offs’, or close copies of Northern hemisphere mass market garments. Both Weller (2007) and Walsh (2009) have commented on this practice. The knock-on effect from this continues to be a cautious, derivative fashion sensibility within Australian mass market fashion design, where any new trend or product is first tested and proved overseas months earlier. However, there is evidence that this is changing. The rapid online dissemination of global fashion trends, coupled with the Australian consumer’s willingness to shop online, has meant that the ‘knock-off’ is less viable. For this reason, a number of mass market companies are moving away from the practice of direct sourcing and are developing product in-house under a Northern hemisphere model. This shift is also witnessed in the trend for mass market companies to develop collections in partnership with independent Australian designers. This paper explores the current and potential effects of these shifts within Australian mass market design practice, and discusses how they may impact on designers, consumers and on the wider culture of Australian fashion.
Resumo:
Australia's mass market fashion labels have traditionally benefitted from their peripheral location to the world's fashion centres. Operating a season behind, Australian mass market designers and buyers were well-placed to watch trends play out overseas before testing them in the Australian marketplace. For this reason, often a designer's role was to source and oversee the manufacture of 'knock-offs', or close copies of northern hemisphere mass market garments. Both Weller and Walsh have commented on this practice.12 The knock-on effect from this continues to be a cautious, derivative fashion sensibility within Australian mass market fashion design, where any new trend or product is first tested and proved overseas months earlier. However, there is evidence that this is changing. The rapid online dissemination of global fashion trends, coupled with the Australian consumer’s willingness to shop online, has meant that the ‘knock-off’ is less viable. For this reason, a number of mass market companies are moving away from the practice of direct sourcing and are developing product in-house under a northern hemisphere model. This shift is also witnessed in the trend for mass market companies to develop collections in partnership with independent Australian designers. This paper explores the current and potential effects of these shifts within Australian mass market design practice, and discusses how they may impact on both consumers and on the wider culture of Australian fashion.