73 resultados para Kinematics

em Queensland University of Technology - ePrints Archive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Teachers' failure to utilise MBL activities more widely may be due to not recognising their capacity to transform the nature of laboratory activities to be more consistent with contemporary constructivist theories of learning. This research aimed to increase understanding of how MBL activities specifically designed to be consistent with a constructivist theory of learning support or constrain student construction of understanding. The first author conducted the research with his Year 11 physics class of 29 students. Dyads completed nine tasks relating to kinematics using a Predict-Observe-Explain format. Data sources included video and audio recordings of students and teacher during four 70-minute sessions, students' display graphs and written notes, semi-structured student interviews, and the teacher's journal. The study identifies the actors and describes the patterns of interactions in the MBL. Analysis of students' discourse and actions identified many instances where students' initial understanding of kinematics were mediated in multiple ways. Students invented numerous techniques for manipulating data in the service of their emerging understanding. The findings are presented as eight assertions. Recommendations are made for developing pedagogical strategies incorporating MBL activities which will likely catalyse student construction of understanding.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A crucial process of chlamydial development involves differentiation of the replicative reticulate body (RB) into the infectious elementary body (EB). We present experimental evidence to provide support for a contact-dependent hypothesis for explaining the trigger involved in differentiation. We recorded live-imaging of Chlamydia trachomatis-infected McCoy cells at key times during development and tracked the temporospatial trajectories of individual chlamydial particles. We found that movement of the particles is related to development. Early to mid-developmental stages involved slight wobbling of RBs. The average speed of particles increased sharply at 24 h postinfection (after the estimated onset of RB to EB differentiation). We also investigated a penicillin-supplemented culture containing EBs, RBs, and aberrantly enlarged, stressed chlamydiae. Near-immobile enlarged particles are consistent with their continued tethering to the chlamydial inclusion membrane (CIM). We found a significantly negative, nonlinear association between speed and size/type of particles, providing further support for the hypothesis that particles become untethered near the onset of RB to EB differentiation. This study establishes the relationship between the motion properties of the chlamydiae and developmental stages, whereby wobbling RBs gradually lose contact with the CIM, and RB detachment from the CIM is coincidental with the onset of late differentiation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: To determine whether differences existed in lower-extremity joint biomechanics during self-selected walking cadence (SW) and fast walking cadence (FW) in overweight- and normal-weight children.---------- Design: Survey.---------- Setting: Institutional gait study center.---------- Participants: Participants (N=20; mean age ± SD, 10.4±1.6y) from referred and volunteer samples were classified based on body mass index percentiles and stratified by age and sex. Exclusion criteria were a history of diabetes, neuromuscular disorder, or recent lower-extremity injury.---------- Main Outcome Measures: Sagittal, frontal, and transverse plane angular displacements (degrees) and peak moments (newton meters) at the hip, knee, and ankle joints.---------- Results: The level of significance was set at P less than .008. Compared with normal-weight children, overweight children had greater absolute peak joint moments at the hip (flexor, extensor, abductor, external rotator), the knee (flexor, extensor, abductor, adductor, internal rotator), and the ankle (plantarflexor, inverter, external/internal rotators). After including body weight as a covariate, overweight children had greater peak ankle dorsiflexor moments than normal-weight children. No kinematic differences existed between groups. Greater peak hip extensor moments and less peak ankle inverter moments occurred during FW than SW. There was greater angular displacement during hip flexion as well as less angular displacement at the hip (extension, abduction), knee (flexion, extension), and ankle (plantarflexion, inversion) during FW than SW.---------- Conclusions: Overweight children experienced increased joint moments, which can have long-term orthopedic implications and suggest a need for more nonweight-bearing activities within exercise prescription. The percent of increase in joint moments from SW to FW was not different for overweight and normal-weight children. These findings can be used in developing an exercise prescription that must involve weight-bearing activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Footwear is designed to reduce injury, and enhance performance. However, the effect footwear has on foot and ankle kinematics currently remains unknown. Acknowledging the need for improved understanding, multi-segment models of the foot-shoe complex need to be established to both describe and quantify the effect footwear has on the foot and ankle during stance phase of gait. The purpose of this study was to quantify how footwear alters the kinematics of the foot inside the shoe during stance phase of walking gait.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Footwear is designed to reduce injury and enhance performance. However, the effect footwear has on foot and ankle kinematics currently remains unknown. Acknowledging the need for improved understanding, the aim of this study was to describe the effect footwear has on the kinematics of a multi segment foot during stance phase of walking gait.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Pre-participation screening is commonly used to measure and assess potential intrinsic injury risk. The single leg squat is one such clinical screening measure used to assess lumbopelvic stability and associated intrinsic injury risk. With the addition of a decline board, the single leg decline squat (SLDS) has been shown to reduce ankle dorsiflexion restrictions and allowed greater sagittal plane movement of the hip and knee. On this basis, the SLDS has been employed in the Cricket Australia physiotherapy screening protocols as a measure of lumbopelvic control in the place of the more traditional single leg flat squat (SLFS). Previous research has failed to demonstrate which squatting technique allows for a more comprehensive assessment of lumbopelvic stability. Tenuous links are drawn between kinematics and hip strength measures within the literature for the SLS. Formal evaluation of subjective screening methods has also been suggested within the literature. Purpose: This study had several focal points namely 1) to compare the kinematic differences between the two single leg squatting conditions, primarily the five key kinematic variables fundamental to subjectively assess lumbopelvic stability; 2) determine the effect of ankle dorsiflexion range of motion has on squat kinematics in the two squat techniques; 3) examine the association between key kinematics and subjective physiotherapists’ assessment; and finally 4) explore the association between key kinematics and hip strength. Methods: Nineteen (n=19) subjects performed five SLDS and five SLFS on each leg while being filmed by an 8 camera motion analysis system. Four hip strength measures (internal/external rotation and abd/adduction) and ankle dorsiflexion range of motion were measured using a hand held dynamometer and a goniometer respectively on 16 of these subjects. The same 16 participants were subjectively assessed by an experienced physiotherapist for lumbopelvic stability. Paired samples t-tests were performed on the five predetermined kinematic variables to assess the differences between squat conditions. A Bonferroni correction for multiple comparisons was used which adjusted the significance value to p = 0.005 for the paired t-tests. Linear regressions were used to assess the relationship between kinematics, ankle range of motion and hip strength measures. Bivariate correlations between hip strength measures and kinematics and pelvic obliquity were employed to investigate any possible relationships. Results: 1) Significant kinematic differences between squats were observed in dominant (D) and non-dominant (ND) end of range hip external rotation (ND p = <0.001; D p = 0.004) and hip adduction kinematics (ND p = <0.001; D p = <0.001). With the mean angle, only the non-dominant leg observed significant differences in hip adduction (p = 0.001) and hip external rotation (p = <0.001); 2) Significant linear relationships were observed between clinical measures of ankle dorsiflexion and sagittal plane kinematic namely SLFS dominant ankle (p = 0.006; R2 = .429), SLFS non-dominant knee (p = 0.015; R2 = .352) and SLFS non-dominant ankle (p = 0.027; R2 = .305) kinematics. Only the dominant ankle (p = 0.020; R2 = .331) was found to have a relationship with the decline squat. 3) Strength measures had tenuous associations with the subjective assessments of lumbopelvic stability with no significant relationships being observed. 4) For the non-dominant leg, external rotation strength and abduction strength were found to be significantly correlated with hip rotation kinematics (Newtons r = 0.458 p = 0.049; Normalised for bodyweight: r = 0.469; p = 0.043) and pelvic obliquity (normalised for bodyweight: r = 0.498 p = 0.030) respectively for the SLFS only. No significant relationships were observed in the dominant leg for either squat condition. Some elements of the hip strength screening protocols had linear relationships with kinematics of the lower limb, particularly the sagittal plane movements of the knee and ankle. Strength measures had tenuous associations with the subjective assessments of lumbopelvic stability with no significant relationships being observed; Discussion: The key finding of this study illustrated that kinematic differences can occur at the hip without significant kinematic differences at the knee as a result of the introduction of a decline board. Further observations reinforce the role of limited ankle dorsiflexion range of motion on sagittal plane movement of the hip and knee and in turn multiplanar kinematics of the lower limb. The kinematic differences between conditions have clinical implications for screening protocols that employ frontal plane movement of the knee as a guide for femoral adduction and rotation. Subjects who returned stronger hip strength measurements also appeared to squat deeper as characterised by differences in sagittal plane kinematics of the knee and ankle. Despite the aforementioned findings, the relationship between hip strength and lower limb kinematics remains largely tenuous in the assessment of the lumbopelvic stability using the SLS. The association between kinematics and the subjective measures of lumbopelvic stability also remain tenuous between and within SLS screening protocols. More functional measures of hip strength are needed to further investigate these relationships. Conclusion: The type of SLS (flat or decline) should be taken into account when screening for lumbopelvic stability. Changes to lower limb kinematics, especially around the hip and pelvis, were observed with the introduction of a decline board despite no difference in frontal plane knee movements. Differences in passive ankle dorsiflexion range of motion yielded variations in knee and ankle kinematics during a self-selected single leg squatting task. Clinical implications of removing posterior ankle restraints and using the knee as a guide to illustrate changes at the hip may result in inaccurate screening of lumbopelvic stability. The relationship between sagittal plane lower limb kinematics and hip strength may illustrate that self-selected squat depth may presumably be a useful predictor of the lumbopelvic stability. Further research in this area is required.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Measurement accuracy is critical for biomechanical gait assessment. Very few studies have determined the accuracy of common clinical rearfoot variables between cameras with different collection frequencies. Research question: What is the measurement error for common rearfoot gait parameters when using a standard 30Hz digital camera compared to 100Hz camera? Type of study: Descriptive. Methods: 100 footfalls were recorded from 10 subjects ( 10 footfalls per subject) running on a treadmill at 2.68m/s. A high-speed digital timer, accurate within 1ms served as an external reference. Markers were placed along the vertical axis of the heel counter and the long axis of the shank. 2D coordinates for the four markers were determined from heel strike to heel lift. Variables of interest included time of heel strike (THS), time of heel lift (THL), time to maximum eversion (TMax), and maximum rearfoot eversion angle (EvMax). Results: THS difference was 29.77ms (+/- 8.77), THL difference was 35.64ms (+/- 6.85), and TMax difference was 16.50ms (+/- 2.54). These temporal values represent a difference equal to 11.9%, 14.3%, and 6.6% of the stance phase of running gait, respectively. EvMax difference was 1.02 degrees (+/- 0.46). Conclusions: A 30Hz camera is accurate, compared to a high-frequency camera, in determining TMax and EvMax during a clinical gait analysis. However, relatively large differences, in excess of 12% of the stance phase of gait, for THS and THL variables were measured.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Consistency and invariance in movements are traditionally viewed as essential features of skill acquisition and elite sports performance. This emphasis on the stabilization of action has resulted in important processes of adaptation in movement coordination during performance being overlooked in investigations of elite sport performance. Here we investigate whether differences exist between the movement kinematics displayed by five, elite springboard divers (age 17 ± 2.4 years) in the preparation phases of baulked and completed take-offs. The two-dimensional kinematic characteristics of the reverse somersault take-off phases (approach and hurdle) were recorded during normal training sessions and used for intra-individual analysis. All participants displayed observable differences in movement patterns at key events during the approach phase; however, the presence of similar global topological characteristics suggested that, overall, participants did not perform distinctly different movement patterns during completed and baulked dives. These findings provide a powerful rationale for coaches to consider assessing functional variability or adaptability of motor behaviour as a key criterion of successful performance in sports such as diving.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The validity of fatigue protocols involving multi-joint movements, such as stepping, has yet to be clearly defined. Although surface electromyography can monitor the fatigue state of individual muscles, the effects of joint angle and velocity variation on signal parameters are well established. Therefore, the aims of this study were to i) describe sagittal hip and knee kinematics during repetitive stepping ii) identify periods of high inter-trial variability and iii) determine within-test reliability of hip and knee kinematic profiles. A group of healthy men (N = 15) ascended and descended from a knee-high platform wearing a weighted vest (10%BW) for 50 consecutive trials. The hip and knee underwent rapid flexion and extension during step ascent and descent. Variability of hip and knee velocity peaked between 20-40% of the ascent phase and 80-100% of the descent. Significant (p<0.05) reductions in joint range of motion and peak velocity during step ascent were observed, while peak flexion velocity increased during descent. Healthy individuals use complex hip and knee motion to negotiate a knee-high step with kinematic patterns varying across multiple repetitions. These findings have important implications for future studies intending to use repetitive stepping as a fatigue model for the knee extensors and flexors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis describes, for the first time, the forces involved in the Nordic hamstring exercise, its reliability and the biomechanical effects of extra loading during the movement. The results provide practitioners with valuable information to enhance hamstring injury prevention and rehabilitation programs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A recent article in the Journal of Science and Medicine in Sport by Chapman et al.1 reported data from an empirical investigation comparing lower extremity joint motions, joint coordination and muscle recruitment in expert and novice cyclists. 3D kinematic and intramuscular electromyographic (EMG) analyses revealed no differences between expert and novice cyclists for normalised joint angles and velocities of the pelvis, hip, knee and ankle. However, significant differences in the strength of sagittal plane kinematics for hip–ankle and knee–ankle joint couplings were reported, with expert cyclists displaying tighter coupling relationships than novice cyclists. Furthermore, significant differences between expert and novice cyclists for all muscle recruitment parameters, except timing of peak EMG amplitude, were also reported.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Low back pain is an increasing problem in industrialised countries and although it is a major socio-economic problem in terms of medical costs and lost productivity, relatively little is known about the processes underlying the development of the condition. This is in part due to the complex interactions between bone, muscle, nerves and other soft tissues of the spine, and the fact that direct observation and/or measurement of the human spine is not possible using non-invasive techniques. Biomechanical models have been used extensively to estimate the forces and moments experienced by the spine. These models provide a means of estimating the internal parameters which can not be measured directly. However, application of most of the models currently available is restricted to tasks resembling those for which the model was designed due to the simplified representation of the anatomy. The aim of this research was to develop a biomechanical model to investigate the changes in forces and moments which are induced by muscle injury. In order to accurately simulate muscle injuries a detailed quasi-static three dimensional model representing the anatomy of the lumbar spine was developed. This model includes the nine major force generating muscles of the region (erector spinae, comprising the longissimus thoracis and iliocostalis lumborum; multifidus; quadratus lumborum; latissimus dorsi; transverse abdominis; internal oblique and external oblique), as well as the thoracolumbar fascia through which the transverse abdominis and parts of the internal oblique and latissimus dorsi muscles attach to the spine. The muscles included in the model have been represented using 170 muscle fascicles each having their own force generating characteristics and lines of action. Particular attention has been paid to ensuring the muscle lines of action are anatomically realistic, particularly for muscles which have broad attachments (e.g. internal and external obliques), muscles which attach to the spine via the thoracolumbar fascia (e.g. transverse abdominis), and muscles whose paths are altered by bony constraints such as the rib cage (e.g. iliocostalis lumborum pars thoracis and parts of the longissimus thoracis pars thoracis). In this endeavour, a separate sub-model which accounts for the shape of the torso by modelling it as a series of ellipses has been developed to model the lines of action of the oblique muscles. Likewise, a separate sub-model of the thoracolumbar fascia has also been developed which accounts for the middle and posterior layers of the fascia, and ensures that the line of action of the posterior layer is related to the size and shape of the erector spinae muscle. Published muscle activation data are used to enable the model to predict the maximum forces and moments that may be generated by the muscles. These predictions are validated against published experimental studies reporting maximum isometric moments for a variety of exertions. The model performs well for fiexion, extension and lateral bend exertions, but underpredicts the axial twist moments that may be developed. This discrepancy is most likely the result of differences between the experimental methodology and the modelled task. The application of the model is illustrated using examples of muscle injuries created by surgical procedures. The three examples used represent a posterior surgical approach to the spine, an anterior approach to the spine and uni-lateral total hip replacement surgery. Although the three examples simulate different muscle injuries, all demonstrate the production of significant asymmetrical moments and/or reduced joint compression following surgical intervention. This result has implications for patient rehabilitation and the potential for further injury to the spine. The development and application of the model has highlighted a number of areas where current knowledge is deficient. These include muscle activation levels for tasks in postures other than upright standing, changes in spinal kinematics following surgical procedures such as spinal fusion or fixation, and a general lack of understanding of how the body adjusts to muscle injuries with respect to muscle activation patterns and levels, rate of recovery from temporary injuries and compensatory actions by other muscles. Thus the comprehensive and innovative anatomical model which has been developed not only provides a tool to predict the forces and moments experienced by the intervertebral joints of the spine, but also highlights areas where further clinical research is required.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigated the relative importance of vision and proprioception in estimating target and hand locations in a dynamic environment. Subjects performed a position estimation task in which a target moved horizontally on a screen at a constant velocity and then disappeared. They were asked to estimate the position of the invisible target under two conditions: passively observing and manually tracking. The tracking trials included three visual conditions with a cursor representing the hand position: always visible, disappearing simultaneously with target disappearance, and always invisible. The target’s invisible displacement was systematically underestimated during passive observation. In active conditions, tracking with the visible cursor significantly decreased the extent of underestimation. Tracking of the invisible target became much more accurate under this condition and was not affected by cursor disappearance. In a second experiment, subjects were asked to judge the position of their unseen hand instead of the target during tracking movements. Invisible hand displacements were also underestimated when compared with the actual displacement. Continuous or brief presentation of the cursor reduced the extent of underestimation. These results suggest that vision–proprioception interactions are critical for representing exact target–hand spatial relationships, and that such sensorimotor representation of hand kinematics serves a cognitive function in predicting target position. We propose a hypothesis that the central nervous system can utilize information derived from proprioception and/or efference copy for sensorimotor prediction of dynamic target and hand positions, but that effective use of this information for conscious estimation requires that it be presented in a form that corresponds to that used for the estimations.