160 resultados para Kinematic viscosity
em Queensland University of Technology - ePrints Archive
Resumo:
An Artificial Neural Network (ANN) is a computational modeling tool which has found extensive acceptance in many disciplines for modeling complex real world problems. An ANN can model problems through learning by example, rather than by fully understanding the detailed characteristics and physics of the system. In the present study, the accuracy and predictive power of an ANN was evaluated in predicting kinetic viscosity of biodiesels over a wide range of temperatures typically encountered in diesel engine operation. In this model, temperature and chemical composition of biodiesel were used as input variables. In order to obtain the necessary data for model development, the chemical composition and temperature dependent fuel properties of ten different types of biodiesels were measured experimentally using laboratory standard testing equipments following internationally recognized testing procedures. The Neural Networks Toolbox of MatLab R2012a software was used to train, validate and simulate the ANN model on a personal computer. The network architecture was optimised following a trial and error method to obtain the best prediction of the kinematic viscosity. The predictive performance of the model was determined by calculating the absolute fraction of variance (R2), root mean squared (RMS) and maximum average error percentage (MAEP) between predicted and experimental results. This study found that ANN is highly accurate in predicting the viscosity of biodiesel and demonstrates the ability of the ANN model to find a meaningful relationship between biodiesel chemical composition and fuel properties at different temperature levels. Therefore the model developed in this study can be a useful tool in accurately predict biodiesel fuel properties instead of undertaking costly and time consuming experimental tests.
Resumo:
The renovation of biomass waste in the form of Mahogany seed waste into bio-fuel as well as activated carbon by fixed bed pyrolysis reactor has been taken into consideration in this study. The mahogany seed in particle form is pyrolyzed in an enormously heated fixed bed reactor with nitrogen as the carrier gas. The reactor is heated from 4000C to 6000C using a external heater in which rice husk and charcoal are used as the heater biomass fuel. Reactor bed temperature, running time and feed particle size have been varied to get the optimum operating conditions of the system. The parameters are found to influence the product yields to a large extent. A maximum liquid and char yield are 49 wt. % and 35 wt. % respectively obtained at a reactor bed temperature 5000C when the running time is 90 minutes. Acquired pyrolyzed oil at these optimal process conditions were analyzed for some of their properties as an alternative fuel. The oil possesses comparable flame temperature, favorable flash point and reasonable viscosity along with somewhat higher density. The kinematic viscosity of the derived fuel is 3.8 cSt and density is 1525 kg/m3. The higher calorific value is found 32.4 MJ/kg which is significantly higher than other biomass derived fuel. Moderate adsorption capacity of the prepared activated carbon in case of methyl blue & tea water was also revealed.
Resumo:
Physical and chemical properties of biofuel are influenced by structural features of fatty acid such as chain length, degree of unsaturation and branching of the chain. A simple and reliable calculation method to estimate fuel property is therefore needed to avoid experimental testing which is difficult, costly and time consuming. Typically in commercial biodiesel production such testing is done for every batch of fuel produced. In this study 9 different algae species were selected that were likely to be suitable for subtropical climates. The fatty acid methyl esters (FAMEs) of all algae species were analysed and the fuel properties like cetane number (CN), cold filter plugging point (CFPP), kinematic viscosity (KV), density and higher heating value (HHV) were determined. The relation of each fatty acid with particular fuel property is analysed using multivariate and multi-criteria decision method (MCDM) software. They showed that some fatty acids have major influences on the fuel properties whereas others have minimal influence. Based on the fuel properties and amounts of lipid content rank order is drawn by PROMETHEE-GAIA which helped to select the best algae species for biodiesel production in subtropical climates. Three species had fatty acid profiles that gave the best fuel properties although only one of these (Nannochloropsis oculata) is considered the best choice because of its higher lipid content.
Resumo:
Physical and chemical properties of biodiesel are influenced by structural features of the fatty acids, such as chain length, degree of unsaturation and branching of the carbon chain. This study investigated if microalgal fatty acid profiles are suitable for biodiesel characterization and species selection through Preference Ranking Organisation Method for Enrichment Evaluation (PROMETHEE) and Graphical Analysis for Interactive Assistance (GAIA) analysis. Fatty acid methyl ester (FAME) profiles were used to calculate the likely key chemical and physical properties of the biodiesel [cetane number (CN), iodine value (IV), cold filter plugging point, density, kinematic viscosity, higher heating value] of nine microalgal species (this study) and twelve species from the literature, selected for their suitability for cultivation in subtropical climates. An equal-parameter weighted (PROMETHEE-GAIA) ranked Nannochloropsis oculata, Extubocellulus sp. and Biddulphia sp. highest; the only species meeting the EN14214 and ASTM D6751-02 biodiesel standards, except for the double bond limit in the EN14214. Chlorella vulgaris outranked N. oculata when the twelve microalgae were included. Culture growth phase (stationary) and, to a lesser extent, nutrient provision affected CN and IV values of N. oculata due to lower eicosapentaenoic acid (EPA) contents. Application of a polyunsaturated fatty acid (PUFA) weighting to saturation led to a lower ranking of species exceeding the double bond EN14214 thresholds. In summary, CN, IV, C18:3 and double bond limits were the strongest drivers in equal biodiesel parameter-weighted PROMETHEE analysis.
Resumo:
Biodiesel, produced from renewable feedstock represents a more sustainable source of energy and will therefore play a significant role in providing the energy requirements for transportation in the near future. Chemically, all biodiesels are fatty acid methyl esters (FAME), produced from raw vegetable oil and animal fat. However, clear differences in chemical structure are apparent from one feedstock to the next in terms of chain length, degree of unsaturation, number of double bonds and double bond configuration-which all determine the fuel properties of biodiesel. In this study, prediction models were developed to estimate kinematic viscosity of biodiesel using an Artificial Neural Network (ANN) modelling technique. While developing the model, 27 parameters based on chemical composition commonly found in biodiesel were used as the input variables and kinematic viscosity of biodiesel was used as output variable. Necessary data to develop and simulate the network were collected from more than 120 published peer reviewed papers. The Neural Networks Toolbox of MatLab R2012a software was used to train, validate and simulate the ANN model on a personal computer. The network architecture and learning algorithm were optimised following a trial and error method to obtain the best prediction of the kinematic viscosity. The predictive performance of the model was determined by calculating the coefficient of determination (R2), root mean squared (RMS) and maximum average error percentage (MAEP) between predicted and experimental results. This study found high predictive accuracy of the ANN in predicting fuel properties of biodiesel and has demonstrated the ability of the ANN model to find a meaningful relationship between biodiesel chemical composition and fuel properties. Therefore the model developed in this study can be a useful tool to accurately predict biodiesel fuel properties instead of undertaking costly and time consuming experimental tests.
Resumo:
Commercially viable carbon–neutral biodiesel production from microalgae has potential for replacing depleting petroleum diesel. The process of biodiesel production from microalgae involves harvesting, drying and extraction of lipids which are energy- and cost-intensive processes. The development of effective large-scale lipid extraction processes which overcome the complexity of microalgae cell structure is considered one of the most vital requirements for commercial production. Thus the aim of this work was to investigate suitable extraction methods with optimised conditions to progress opportunities for sustainable microalgal biodiesel production. In this study, the green microalgal species consortium, Tarong polyculture was used to investigate lipid extraction with hexane (solvent) under high pressure and variable temperature and biomass moisture conditions using an Accelerated Solvent Extraction (ASE) method. The performance of high pressure solvent extraction was examined over a range of different process and sample conditions (dry biomass to water ratios (DBWRs): 100%, 75%, 50% and 25% and temperatures from 70 to 120 ºC, process time 5–15 min). Maximum total lipid yields were achieved at 50% and 75% sample dryness at temperatures of 90–120 ºC. We show that individual fatty acids (Palmitic acid C16:0; Stearic acid C18:0; Oleic acid C18:1; Linolenic acid C18:3) extraction optima are influenced by temperature and sample dryness, consequently affecting microalgal biodiesel quality parameters. Higher heating values and kinematic viscosity were compliant with biodiesel quality standards under all extraction conditions used. Our results indicate that biodiesel quality can be positively manipulated by selecting process extraction conditions that favour extraction of saturated and mono-unsaturated fatty acids over optimal extraction conditions for polyunsaturated fatty acids, yielding positive effects on cetane number and iodine values. Exceeding biodiesel standards for these two parameters opens blending opportunities with biodiesels that fall outside the minimal cetane and maximal iodine values.
Resumo:
The structural features of fatty acids in biodiesel, including degree of unsaturation, percentage of saturated fatty acids and average chain length, influence important fuel properties such as cetane number, iodine value, density, kinematic viscosity, higher heating value and oxidation stability. The composition of fatty acid esters within the fuel should therefore be in the correct ratio to ensure fuel properties are within international biodiesel standards such as ASTM 6751 or EN 14214. This study scrutinises the influence of fatty acid composition and individual fatty acids on fuel properties. Fuel properties were estimated based on published equations, and measured according to standard procedure ASTM D6751 and EN 14214 to confirm the influences of the fatty acid profile. Based on fatty acid profile-derived calculations, the cetane number of the microalgal biodiesel was estimated to be 11.6, but measured 46.5, which emphasises the uncertainty of the method used for cetane number calculation. Multi-criteria decision analysis (MCDA), PROMETHEE-GAIA, was used to determine the influence of individual fatty acids on fuel properties in the GAIA plane. Polyunsaturated fatty acids increased the iodine value and had a negative influence on cetane number. Kinematic viscosity was negatively influenced by some long chain polyunsaturated fatty acids such as C20:5 and C22:6 and some of the more common saturated fatty acids C14:0 and C18:0. The positive impact of average chain length on higher heating value was also confirmed in the GAIA plane
Resumo:
Changes in stride characteristics and gait rhythmicity characterize gait in Parkinson's disease and are widely believed to contribute to falls in this population. However, few studies have examined gait in PD patients who fall. This study reports on the complexities of walking in PD patients who reported falling during a 12-month follow-up. Forty-nine patients clinically diagnosed with idiopathic PD and 34 controls had their gait assessed using three-dimensional motion analysis. Of the PD patients, 32 (65%) reported at least one fall during the follow-up compared with 17 (50%) controls. The results showed that PD patients had increased stride timing variability, reduced arm swing and walked with a more stooped posture than controls. Additionally, PD fallers took shorter strides, walked slower, spent more time in double-support, had poorer gait stability ratios and did not project their center of mass as far forward of their base of support when compared with controls. These stride changes were accompanied by a reduced range of angular motion for the hip and knee joints. Relative to walking velocity, PD fallers had increased mediolateral head motion compared with PD nonfallers and controls. Therefore, head motion could exceed “normal” limits, if patients increased their walking speed to match healthy individuals. This could be a limiting factor for improving gait in PD and emphasizes the importance of clinically assessing gait to facilitate the early identification of PD patients with a higher risk of falling.
Resumo:
Real‐time kinematic (RTK) GPS techniques have been extensively developed for applications including surveying, structural monitoring, and machine automation. Limitations of the existing RTK techniques that hinder their applications for geodynamics purposes are twofold: (1) the achievable RTK accuracy is on the level of a few centimeters and the uncertainty of vertical component is 1.5–2 times worse than those of horizontal components and (2) the RTK position uncertainty grows in proportional to the base‐torover distances. The key limiting factor behind the problems is the significant effect of residual tropospheric errors on the positioning solutions, especially on the highly correlated height component. This paper develops the geometry‐specified troposphere decorrelation strategy to achieve the subcentimeter kinematic positioning accuracy in all three components. The key is to set up a relative zenith tropospheric delay (RZTD) parameter to absorb the residual tropospheric effects and to solve the established model as an ill‐posed problem using the regularization method. In order to compute a reasonable regularization parameter to obtain an optimal regularized solution, the covariance matrix of positional parameters estimated without the RZTD parameter, which is characterized by observation geometry, is used to replace the quadratic matrix of their “true” values. As a result, the regularization parameter is adaptively computed with variation of observation geometry. The experiment results show that new method can efficiently alleviate the model’s ill condition and stabilize the solution from a single data epoch. Compared to the results from the conventional least squares method, the new method can improve the longrange RTK solution precision from several centimeters to the subcentimeter in all components. More significantly, the precision of the height component is even higher. Several geosciences applications that require subcentimeter real‐time solutions can largely benefit from the proposed approach, such as monitoring of earthquakes and large dams in real‐time, high‐precision GPS leveling and refinement of the vertical datum. In addition, the high‐resolution RZTD solutions can contribute to effective recovery of tropospheric slant path delays in order to establish a 4‐D troposphere tomography.
Resumo:
Laminar magnetohydrodynamic (MHD) natural convection flow from an isothermal sphere immersed in a fluid with viscosity proportional to linear function of temperature has been studied. The governing boundary layer equations are transformed into a non-dimensional form and the resulting nonlinear system of partial differential equations are reduced to convenient form which are solved numerically by two very efficient methods, namely, (i) Implicit finite difference method together with Keller box scheme and (ii) Direct numerical scheme. Numerical results are presented by velocity and temperature distribution, streamlines and isotherms of the fluid as well as heat transfer characteristics, namely the local skin-friction coefficients and the local heat transfer rate for a wide range of magnetohydrodynamic paramagnet and viscosity-variation parameter.
Resumo:
Magnetohydrodynamic (MHD) natural convection laminar flow from an iso-thermal horizontal circular cylinder immersed in a fluid with viscosity proportional to a linear function of temperature will be discussed with numerical simulations. The governing boundary layer equations are transformed into a non-dimensional form and the resulting nonlinear system of partial differential equa-tions are reduced to convenient form, which are solved numerically by two very efficient methods, namely, (i) Implicit finite difference method together with Keller box scheme and (ii) Direct numerical scheme. Numerical results are presented by velocity and temperature distributions of the fluid as well as heat transfer characteristics, namely the shearing stress and the local heat transfer rate in terms of the local skin-friction coefficient and the local Nusselt number for a wide range of magnetohydrodynamic parameter, viscosity-variation parameter and viscous dissipation parameter. MHD flow in this geometry with temperature dependent viscosity is absent in the literature. The results obtained from the numerical simulations have been veri-fied by two methodologies.
Resumo:
Kinematic models are commonly used to quantify foot and ankle kinematics, yet no marker sets or models have been proven reliable or accurate when wearing shoes. Further, the minimal detectable difference of a developed model is often not reported. We present a kinematic model that is reliable, accurate and sensitive to describe the kinematics of the foot–shoe complex and lower leg during walking gait. In order to achieve this, a new marker set was established, consisting of 25 markers applied on the shoe and skin surface, which informed a four segment kinematic model of the foot–shoe complex and lower leg. Three independent experiments were conducted to determine the reliability, accuracy and minimal detectable difference of the marker set and model. Inter-rater reliability of marker placement on the shoe was proven to be good to excellent (ICC = 0.75–0.98) indicating that markers could be applied reliably between raters. Intra-rater reliability was better for the experienced rater (ICC = 0.68–0.99) than the inexperienced rater (ICC = 0.38–0.97). The accuracy of marker placement along each axis was <6.7 mm for all markers studied. Minimal detectable difference (MDD90) thresholds were defined for each joint; tibiocalcaneal joint – MDD90 = 2.17–9.36°, tarsometatarsal joint – MDD90 = 1.03–9.29° and the metatarsophalangeal joint – MDD90 = 1.75–9.12°. These thresholds proposed are specific for the description of shod motion, and can be used in future research designed at comparing between different footwear.