78 resultados para KIDNEY TRANSPLANTATION

em Queensland University of Technology - ePrints Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Diabetic neuropathy is associated with increased morbidity and mortality. To date, limited data in subjects with impaired glucose tolerance and diabetes demonstrate nerve fiber repair after intervention. This may reflect a lack of efficacy of the interventions but may also reflect difficulty of the tests currently deployed to adequately assess nerve fiber repair, particularly in short-term studies. Corneal confocal microscopy (CCM) represents a novel noninvasive means to quantify nerve fiber damage and repair. Fifteen type 1 diabetic patients undergoing simultaneous pancreas-kidney transplantation (SPK) underwent detailed assessment of neurologic deficits, quantitative sensory testing (QST), electrophysiology, skin biopsy, corneal sensitivity, and CCM at baseline and at 6 and 12 months after successful SPK. At baseline, diabetic patients had a significant neuropathy compared with control subjects. After successful SPK there was no significant change in neurologic impairment, neurophysiology, QST, corneal sensitivity, and intraepidermal nerve fiber density (IENFD). However, CCM demonstrated significant improvements in corneal nerve fiber density, branch density, and length at 12 months. Normalization of glycemia after SPK shows no significant improvement in neuropathy assessed by the neurologic deficits, QST, electrophysiology, and IENFD. However, CCM shows a significant improvement in nerve morphology, providing a novel noninvasive means to establish early nerve repair that is missed by currently advocated assessment techniques.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reactive oxygen species are generated during ischaemia-reperfusion of tissue. Oxidation of thymidine by hydroxyl radicals (HO) leads to the formation of 5,6-dihydroxy-5,6-dihydrothymidine (thymidine glycol). Thymidine glycol is excreted in urine and can be used as biomarker of oxidative DNA damage. Time dependent changes in urinary excretion rates of thymidine glycol were determined in six patients after kidney transplantation and in six healthy controls. A new analytical method was developed involving affinity chromatography and subsequent reverse-phase high-performance liquid chromatography (RP-HPLC) with a post-column chemical reaction detector and endpoint fluorescence detection. The detection limit of this fluorimetric assay was 1.6 ng thymidine glycol per ml urine, which corresponds to about half of the physiological excretion level in healthy control persons. After kidney transplantation the urinary excretion rate of thymidine glycol increased gradually reaching a maximum around 48 h. The excretion rate remained elevated until the end of the observation period of 10 days. Severe proteinuria with an excretion rate of up to 7.2 g of total protein per mmol creatinine was also observed immediately after transplantation and declined within the first 24 h of allograft function (0.35 + 0.26 g/mmol creatinine). The protein excretion pattern, based on separation of urinary proteins on sodium dodecyl sulphate-polyacrylamide gel electrophorosis (SDS-PAGE), as well as excretion of individual biomarker proteins, indicated nonselective glomerular and tubular damage. The increased excretion of thymidine glycol after kidney transplantation may be explained by ischaemia-reperfusion induced oxidative DNA damage of the transplanted kidney.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A large number of human polyomaviruses have been discovered in the last 7 years. However, little is known about the clinical impact on vulnerable immunosuppressed patient populations. Blood, urine, and respiratory swabs collected from a prospective, longitudinal adult kidney transplant cohort (n = 167) generally pre-operatively, at day 4, months 1, 3, and 6 posttransplant, and at BK viremic episodes within the first year were screened for 12 human polyomaviruses using real-time polymerase chain reaction. Newly discovered polyomaviruses were most commonly detected in the respiratory tract, with persistent shedding seen for up to 6 months posttransplant. Merkel cell polyomavirus was the most common detection, but was not associated with clinical symptoms or subsequent development of skin cancer or other skin abnormalities. In contrast, KI polyomavirus was associated with respiratory disease in a subset of patients. Human polyomavirus 9, Malawi polyomavirus, and human polyomavirus 12 were not detected in any patient samples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose Samoan communities in Australia exhibit a disproportionate rate of kidney disease compared with other Australians. This article describes a research project that used a culturally sensitive framework, Fa’afaletui, to help reduce the barriers of language and culture and increase our understanding of the factors contributing to kidney disease, in one Samoan community in Australia. Design Semistructured group interviews were undertaken with Samoan community families and groups. The interviews were analyzed according to key concepts embedded in the Fa’afaletui framework. Findings Four factors associated with health risks in this Samoan community emerged—diet and exercise; issues related to the collective (incorporating the village, church, and family); tapu or cultural protocols; and the importance of language. Conclusions The findings suggest that future kidney health promotion initiatives within this Samoan community will be more effective if they are sensitive to Samoan cultural norms, language, and context.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: With growing recognition of the role of inflammation in the development of chronic and acute disease, fish oil is increasingly used as a therapeutic agent, but the nature of the intervention may pose barriers to adherence in clinical populations. Our objective was to investigate the feasibility of using a fish oil supplement in hemodialysis patients. ---------- Design: This was a nonrandomized intervention study.---------- Setting: Eligible patients were recruited at the Hemodialysis Unit of Wesley Hospital, Brisbane, Queensland, Australia. Patients The sample included 28 maintenance hemodialysis patients out of 43 eligible patients in the unit. Exclusion criteria included patients regularly taking a fish oil supplement at baseline, receiving hemodialysis for less than 3 months, or being unable to give informed consent.---------- Intervention: Eicosapentaenoic acid (EPA) was administered at 2000 mg/day (4 capsules) for 12 weeks. Adherence was measured at baseline and weekly throughout the study according to changes in plasma EPA, and was further measured subjectively by self-report.---------- Results: Twenty patients (74%) adhered to the prescription based on changes in plasma EPA, whereas an additional two patients self-reported good adherence. There was a positive relationship between fish oil intake and change in plasma EPA. Most patients did not report problems with taking the fish oil. Using the baseline data, it was not possible to characterize adherent patients.---------- Conclusions: Despite potential barriers, including the need to take a large number of prescribed medications already, 74% of hemodialysis patients adhered to the intervention. This study demonstrated the feasibility of using fish oil in a clinical population.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Poor patient compliance with peritoneal dialysis (PD) has significant adverse effects on morbidity and mortality rates in individuals with chronic kidney disease (CKD). It also adds to the resource burdens of healthcare services and providers. This paper explores the notion of PD compliance in patients with CKD with reference to the relevant published literature. The analysis of the literature reveals that ‘PD compliance’ is a complex and challenging construct for both patients and health professionals. There is no universal definition of compliance that is widely adopted in practice and research, and therefore a lack of consensus on how to determine ‘compliant’ patient outcomes. There are also multiple and interconnected determinants of PD compliance that are context-bound, which healthcare professionals must be aware of, and which makes producing consensus of measuring PD compliance difficult. The complexity of the interventions required to produce even a modest improvement in PD compliance, which are described in this paper, are significant. Compliance with PD and other treatments for CKD is a multidimensional, context-bound concept, that to date has tended to efface the role and needs of the renal patient. We conclude the paper with the implications for contemporary practice.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cell based therapies as they apply to tissue engineering and regenerative medicine, require cells capable of self renewal and differentiation, and a prerequisite is to be able to prepare an effective dose of ex vivo expanded cells for autologous transplants. The in vivo identification of a source of physiologically relevant cell types suitable for cell therapies therefore figures as an integral part of tissue engineering. Stem cells serve as a reserve for biological repair, having the potential to differentiate into a number of specialised cell types within the body; they therefore represent the most useful candidates for cell based therapies. The primary goal of stem cell research is to produce cells that are both patient specific, as well as having properties suitable for the specific conditions for which they are intended to remedy. From a purely scientific perspective, stem cells allow scientists to gain a deeper understanding of developmental biology and regenerative therapies. Stem cells have acquired a number of uses for applications in regenerative medicine, immunotherapy, gene therapy, but it is in the area of tissue engineering that they generate most excitement, primarily as a result of their capacity for self-renewal and pluripotency. A unique feature of stem cells is their ability to maintain an uncommitted quiescent state in vivo and then, once triggered by conditions such as disease, injury or natural wear or tear, serve as a reservoir and natural support system to replenish lost cells. Although these cells retain the plasticity to differentiate into various tissues, being able to control this differentiation process is still one of the biggest challenges facing stem cell research. In an effort to harness the potential of these cells a number of studies have been conducted using both embryonic/foetal and adult stem cells. The use of embryonic stem cells (ESC) have been hampered by strong ethical and political concerns, this despite their perceived versatility due to their pluripotency. Ethical issues aside, other concerns raised with ESCs relates to the possibility of tumorigenesis, immune rejection and complications with immunosuppressive therapies, all of which adds layers of complications to the application ESC in research and which has led to the search for alternative sources for stem cells. The adult tissues in higher organisms harbours cells, termed adult stem cells, and these cells are reminiscent of unprogrammed stem cells. A number of sources of adult stem cells have been described. Bone marrow is by far the most accessible source of two potent populations of adult stem cells, namely haematopoietic stem cells (HSCs) and bone marrow mesenchymal stem cells (BMSCs). Autologously harvested adult stem cells can, in contrast to embryonic stem cells, readily be used in autografts, since immune rejection is not an issue; and their use in scientific research has not attracted the ethical concerns which have been the case with embryonic stem cells. The major limitation to their use, however, is the fact that adult stem cells are exceedingly rare in most tissues. This fact makes identifying and isolating these cells problematic; bone marrow being perhaps the only notable exception. Unlike the case of HSCs, there are as yet no rigorous criteria for characterizing MSCs. Changing acuity about the pluripotency of MSCs in recent studies has expanded their potential application; however, the underlying molecular pathways which impart the features distinctive to MSCs remain elusive. Furthermore, the sparse in vivo distribution of these cells imposes a clear limitation to their study in vitro. Also, when MSCs are cultured in vitro, there is a loss of the in vivo microenvironment, resulting in a progressive decline in proliferation potential and multipotentiality. This is further exacerbated with increased passage numbers in culture, characterized by the onset of senescence related changes. As a consequence, it is necessary to establish protocols for generating large numbers of MSCs but without affecting their differentiation potential. MSCs are capable of differentiating into mesenchymal tissue lineages, including bone, cartilage, fat, tendon, muscle, and marrow stroma. Recent findings indicate that adult bone marrow may also contain cells that can differentiate into the mature, nonhematopoietic cells of a number of tissues, including cells of the liver, kidney, lung, skin, gastrointestinal tract, and myocytes of heart and skeletal muscle. MSCs can readily be expanded in vitro and can be genetically modified by viral vectors and be induced to differentiate into specific cell lineages by changing the microenvironment–properties which makes these cells ideal vehicles for cellular gene therapy. MSCs can also exert profound immunosuppressive effects via modulation of both cellular and innate immune pathways, and this property allows them to overcome the issue of immune rejection. Despite the many attractive features associated with MSCs, there are still many hurdles to overcome before these cells are readily available for use in clinical applications. The main concern relates to in vivo characterization and identification of MSCs. The lack of a universal biomarker, sparse in vivo distribution, and a steady age related decline in their numbers, makes it an obvious need to decipher the reprogramming pathways and critical molecular players which govern the characteristics unique to MSCs. This book presents a comprehensive insight into the biology of adult stem cells and their utility in current regeneration therapies. The adult stem cell populations reviewed in this book include bone marrow derived MSCs, adipose derived stem cells (ASCs), umbilical cord blood stem cells, and placental stem cells. The features such as MSC circulation and trafficking, neuroprotective properties, and the nurturing roles and differentiation potential of multiple lineages have been discussed in details. In terms of therapeutic applications, the strengths of MSCs have been presented and their roles in disease treatments such as osteoarthritis, Huntington’s disease, periodontal regeneration, and pancreatic islet transplantation have been discussed. An analysis comparing osteoblast differentiation of umbilical cord blood stem cells and MSCs has been reviewed, as has a comparison of human placental stem cells and ASCs, in terms of isolation, identification and therapeutic applications of ASC in bone, cartilage regeneration, as well as myocardial regeneration. It is my sincere hope that this book will update the reader as to the research progress of MSC biology and potential use of these cells in clinical applications. It will be the best reward to all contributors of this book, if their efforts herein may in some way help the readers in any part of their study, research, and career development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Utilizing a mono-specific antiserum produced in rabbits to hog kidney aromatic L-amino acid decarboxylase (AADC), the enzyme was localized in rat kidney by immunoperoxidase staining. AADC was located predominantly in the proximal convoluted tubules; there was also weak staining in the distal convoluted tubules and collecting ducts. An increase in dietary potassium or sodium intake produced no change in density or distribution of AADC staining in kidney. An assay of AADC enzyme activity showed no difference in cortex or medulla with chronic potassium loading. A change in distribution or activity of renal AADC does not explain the postulated dopaminergic modulation of renal function that occurs with potassium or sodium loading.