3 resultados para Jovellanos, Gaspar Melchor de
em Queensland University of Technology - ePrints Archive
Resumo:
Is there a role for prototyping (sketching, pattern making and sampling) in addressing real world problems of sustainability (People, Profit, and Planet), in this case social/healthcare issues, through fashion and textiles research? Skin cancer and related illnesses are a major cause of disfigurement and death in New Zealand and Australia where the rates of Melanoma, a serious form of skin cancer, are four times higher than in the Northern Hemisphere regions of USA, UK and Canada (IARC, 1992). In 2007, AUT University (Auckland University of Technology) Fashion Department and the Health Promotion Department of Cancer Society - Auckland Division (CSA) developed a prototype hat aimed at exploring a barrier type solution to prevent facial and neck skin damage. This is a paradigm shift from the usual medical research model. This paper provides an overview of the project and examines how a fashion prototype has been used to communicate emergent social, environmental, personal, physiological and technological concerns to the trans-disciplinary research team. The authors consider how the design of a product can enhance and support sustainable design practice while contributing a potential solution to an ongoing health issue. Analysis of this case study provides an insight into prototyping in fashion and textiles design, user engagement and the importance of requirements analysis in relation to sustainable development. The analysis and a successful outcome of the final prototype have provided a gateway to future collaborative research and product development.
Resumo:
Basing signature schemes on strong lattice problems has been a long standing open issue. Today, two families of lattice-based signature schemes are known: the ones based on the hash-and-sign construction of Gentry et al.; and Lyubashevsky’s schemes, which are based on the Fiat-Shamir framework. In this paper we show for the first time how to adapt the schemes of Lyubashevsky to the ring signature setting. In particular we transform the scheme of ASIACRYPT 2009 into a ring signature scheme that provides strong properties of security under the random oracle model. Anonymity is ensured in the sense that signatures of different users are within negligible statistical distance even under full key exposure. In fact, the scheme satisfies a notion which is stronger than the classical full key exposure setting as even if the keypair of the signing user is adversarially chosen, the statistical distance between signatures of different users remains negligible. Considering unforgeability, the best lattice-based ring signature schemes provide either unforgeability against arbitrary chosen subring attacks or insider corruption in log-sized rings. In this paper we present two variants of our scheme. In the basic one, unforgeability is ensured in those two settings. Increasing signature and key sizes by a factor k (typically 80 − 100), we provide a variant in which unforgeability is ensured against insider corruption attacks for arbitrary rings. The technique used is pretty general and can be adapted to other existing schemes.
Resumo:
Initial attempts to obtain lattice based signatures were closely related to reducing a vector modulo the fundamental parallelepiped of a secret basis (like GGH [9], or NTRUSign [12]). This approach leaked some information on the secret, namely the shape of the parallelepiped, which has been exploited on practical attacks [24]. NTRUSign was an extremely efficient scheme, and thus there has been a noticeable interest on developing countermeasures to the attacks, but with little success [6]. In [8] Gentry, Peikert and Vaikuntanathan proposed a randomized version of Babai’s nearest plane algorithm such that the distribution of a reduced vector modulo a secret parallelepiped only depended on the size of the base used. Using this algorithm and generating large, close to uniform, public keys they managed to get provably secure GGH-like lattice-based signatures. Recently, Stehlé and Steinfeld obtained a provably secure scheme very close to NTRUSign [26] (from a theoretical point of view). In this paper we present an alternative approach to seal the leak of NTRUSign. Instead of modifying the lattices and algorithms used, we do a classic leaky NTRUSign signature and hide it with gaussian noise using techniques present in Lyubashevky’s signatures. Our main contributions are thus a set of strong NTRUSign parameters, obtained by taking into account latest known attacks against the scheme, a statistical way to hide the leaky NTRU signature so that this particular instantiation of CVP-based signature scheme becomes zero-knowledge and secure against forgeries, based on the worst-case hardness of the O~(N1.5)-Shortest Independent Vector Problem over NTRU lattices. Finally, we give a set of concrete parameters to gauge the efficiency of the obtained signature scheme.