411 resultados para Irrigation methods
em Queensland University of Technology - ePrints Archive
Resumo:
Background and Aims: Irrigation management affects soil water dynamics as well as the soil microbial carbon and nitrogen turnover and potentially the biosphere-atmosphere exchange of greenhouse gasses (GHG). We present a study on the effect of three irrigation treatments on the emissions of nitrous oxide (N2O) from irrigated wheat on black vertisols in South-Eastern Queensland, Australia. Methods: Soil N2O fluxes from wheat were monitored over one season with a fully automated system that measured emissions on a sub-daily basis. Measurements were taken from 3 subplots for each treatment within a randomized split-plot design. Results: Highest N2O emissions occurred after rainfall or irrigation and the amount of irrigation water applied was found to influence the magnitude of these “emission pulses”. Daily N2O emissions varied from -0.74 to 20.46 g N2O-N ha-1 day-1 resulting in seasonal losses ranging from 0.43 to 0.75 kg N2O N ha-1 season -1 for the different irrigation treatments. Emission factors (EF = proportion of N fertilizer emitted as N2O) over the wheat cropping season, uncorrected for background emissions, ranged from 0.2 to 0.4% of total N applied for the different treatments. Highest seasonal N2O emissions were observed in the treatment with the highest irrigation intensity; however, the N2O intensity (N2O emission per crop yield) was highest in the treatment with the lowest irrigation intensity. Conclusions: Our data suggest that timing and amount of irrigation can effectively be used to reduce N2O losses from irrigated agricultural systems; however, in order to develop sustainable mitigation strategies the N2O intensity of a cropping system is an important concept that needs to be taken into account.
Resumo:
Background: The use of large-volume electrolyte balanced solutions as preparation for colonoscopy often results in poor patient compliance and acceptance. The tolerance, safety, and efficacy of high-versus low volume colon-cleansing methods as preparation for colonoscopy in children were compared by randomized operator-blinded trial. Methods: Twenty-nine children ages 3.6-14.6 years had either high-volume nasogastric balanced polyethylene glycol electrolyte lavage (20 ml/kg/h) until the effluent was clear (n = 15), or two oral doses of sodium phosphate solution (22.5-45 ml) separated by oral fluid intake (n = 14). Results: Both preparations were equally effective. The low-volume preparation was better tolerated and caused less discomfort that the high-volume preparation, judging by serial nurse observations. The incidence of abdominal symptoms, diarrhea, sleep disturbance, and vomiting was not significantly different between the two groups. Both groups had a small reduction in mean hematocrit and serum calcium levels. The sodium phosphate preparation caused increases in mean serum sodium concentrations from 140 to 145 mmol/L and serum phosphate concentrations from 1.41 to 2.53 mmol/L. Ten hours after the commencement of the preanesthetic fast, these concentrations had returned to normal. Conclusions: There are advantages in terms of tolerance, discomfort, and case of administration with acceptable colonic cleansing with the use of the less-invasive oral sodium phosphate low-volume colon-cleansing preparation in children. Safe use requires ensuring an adequate oral fluid intake during the preparation time and avoidance of use in patients with renal insufficiency.