118 resultados para Inverse Scattering Transform

em Queensland University of Technology - ePrints Archive


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fleck and Johnson (Int. J. Mech. Sci. 29 (1987) 507) and Fleck et al. (Proc. Inst. Mech. Eng. 206 (1992) 119) have developed foil rolling models which allow for large deformations in the roll profile, including the possibility that the rolls flatten completely. However, these models require computationally expensive iterative solution techniques. A new approach to the approximate solution of the Fleck et al. (1992) Influence Function Model has been developed using both analytic and approximation techniques. The numerical difficulties arising from solving an integral equation in the flattened region have been reduced by applying an Inverse Hilbert Transform to get an analytic expression for the pressure. The method described in this paper is applicable to cases where there is or there is not a flat region.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A procedure for the evaluation of multiple scattering contributions is described, for deep inelastic neutron scattering (DINS) studies using an inverse geometry time-of-flight spectrometer. The accuracy of a Monte Carlo code DINSMS, used to calculate the multiple scattering, is tested by comparison with analytic expressions and with experimental data collected from polythene, polycrystalline graphite and tin samples. It is shown that the Monte Carlo code gives an accurate representation of the measured data and can therefore be used to reliably correct DINS data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Inclusions of sp-hybridised, trans-polyacetylene [trans-(CH)x] and poly(p-phenylene vinylene) (PPV) chains are revealed using resonant Raman scattering (RRS) investigation of amorphous hydrogenated carbon (a-C:H) films in the near IR – UV range. The RRS spectra of trans-(CH)x core Ag modes and the PPV CC-H phenylene mode are found to transform and disperse as the laser excitation energy ћωL is increased from near IR through visible to UV, whereas sp-bonded inclusions only become evident in UV. This is attributed to ћωL probing of trans-(CH)x chain inhomogeneity and the distribution of chains with varying conjugation length; for PPV to the resonant probing of phelynene ring disorder; and for sp segments, to ћωL probing of a local band gap of end-terminated polyynes. The IR spectra analysis confirmed the presence of sp, trans-(CH)x and PPV inclusions. The obtained RRS results for a-C:H denote differentiation between the core Ag trans-(CH)x modes and the PPV phenylene mode. Furthermore, it was found that at various laser excitation energies the changes in Raman spectra features for trans-(CH)x segments included in an amorphous carbon matrix are the same as in bulk trans-polyacetylene. The latter finding can be used to facilitate identification of trans-(CH)x in the spectra of complex carbonaceous materials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The electron Volt Spectrometer (eVS) is an inverse geometry filter difference spectrometer that has been optimised to measure the single atom properties of condensed matter systems using a technique known as Neutron Compton Scattering (NCS) or Deep Inelastic Neutron Scattering (DINS). The spectrometer utilises the high flux of epithermal neutrons that are produced by the ISIS neutron spallation source enabling the direct measurement of atomic momentum distributions and ground state kinetic energies. In this paper the procedure that is used to calibrate the spectrometer is described. This includes details of the method used to determine detector positions and neutron flight path lengths as well as the determination of the instrument resolution. Examples of measurements on 3 different samples are shown, ZrH2, 4He and Sn which show the self-consistency of the calibration procedure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report inelastic neutron scattering measurements of the neutron Compton profile, J(y), for Be and for D in polycrystalline ZrD2 over a range of momentum transfers, q between 27 and 178 °A−1. The measurements were performed using the inverse geometry spectrometer eVS which is situated at the UK pulsed spallation neutron source ISIS. We have investigated deviations from impulse approximation (IA) scattering which are generically referred to as final state effects (FSEs) using a method described by Sears. This method allows both the magnitude and the q dependence of the FSE to be studied. Analysis of the measured data was compared with analysis of numerical simulations based on the harmonic approximation and good agreement was found for both ZrD2 and Be. Finally we have shown how (∇2V), where V is the interatomic potential, can be extracted from the antisymmetric component of J(y).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The electron Volt Spectrometer (eVS) is an inverse geometry filter difference spectrometer that has been optimised to measure the single atom properties of condensed matter systems using a technique known as Neutron Compton Scattering (NCS) or Deep Inelastic Neutron Scattering (DINS). The spectrometer utilises the high flux of epithermal neutrons that are produced by the ISIS neutron spallation source enabling the direct measurement of atomic momentum distributions and ground state kinetic energies. In this paper the procedure that is used to calibrate the spectrometer is described. This includes details of the method used to determine detector positions and neutron flight path lengths as well as the determination of the instrument resolution. Examples of measurements on 3 different samples are shown, ZrH2, 4He and Sn which show the self-consistency of the calibration procedure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two dimensional flow of a micropolar fluid in a porous channel is investigated. The flow is driven by suction or injection at the channel walls, and the micropolar model due to Eringen is used to describe the working fluid. An extension of Berman's similarity transform is used to reduce the governing equations to a set of non-linear coupled ordinary differential equations. The latter are solved for large mass transfer via a perturbation analysis where the inverse of the cross-flow Reynolds number is used as the perturbing parameter. Complementary numerical solutions for strong injection are also obtained using a quasilinearisation scheme, and good agreement is observed between the solutions obtained from the perturbation analysis and the computations.