247 resultados para Interleukin-2 Gene
em Queensland University of Technology - ePrints Archive
Resumo:
Ankylosing spondylitis (AS) is a common and highly heritable inflammatory arthropathy. Although the gene HLA-B27 is almost essential for the inheritance of the condition, it alone is not sufficient to explain the pattern of familial recurrence of the disease. We have previously demonstrated suggestive linkage of AS to chromosome 2q13, a region containing the interleukin 1 (IL-1) family gene cluster, which includes several strong candidates for involvement in the disease. In the current study, we describe strong association and transmission of IL-1 family gene cluster single-nucleotide polymorphisms and haplotypes with AS.
Resumo:
BACKGROUND Endometriosis is a polygenic disease with a complex and multifactorial aetiology that affects 8-10% of women of reproductive age. Epidemiological data support a link between endometriosis and cancers of the reproductive tract. Fibroblast growth factor receptor 2 (FGFR2) has recently been implicated in both endometrial and breast cancer. Our previous studies on endometriosis identified significant linkage to a novel susceptibility locus on chromosome 10q26 and the FGFR2 gene maps within this linkage region. We therefore hypothesized that variation in FGFR2 may contribute to the risk of endometriosis. METHODS We genotyped 13 single nucleotide polymorphisms (SNPs) densely covering a 27 kb region within intron 2 of FGFR2 including two SNPs (rs2981582 and rs1219648) significantly associated with breast cancer and a total 40 tagSNPs across 150 kb of the FGFR2 gene. SNPs were genotyped in 958 endometriosis cases and 959 unrelated controls. RESULTS We found no evidence for association between endometriosis and FGFR2 intron 2 SNPs or SNP haplotypes and no evidence for association between endometriosis and variation across the FGFR2 gene. CONCLUSIONS Common variation in the breast-cancer implicated intron 2 and other highly plausible causative candidate regions of FGFR2 do not appear to be a major contributor to endometriosis susceptibility in our large Australian sample.
Resumo:
Large, osseous, segmental defects heal poorly. Muscle has a propensity to form bone when exposed to an osteogenic stimulus such as that provided by transfer and expression of cDNA encoding bone morphogenetic protein-2 (BMP-2). The present study evaluated the ability of genetically modified, autologous muscle to heal large cranial defects in rats. Autologous grafts (8 mm � 2 mm) were punched from the biceps femoris muscle and transduced intraoperatively with recombinant adenovirus vector containing human BMP-2 or green fluorescent protein cDNA. While the muscle biopsies were incubating with the vector, a central parietal 8 mm defect was surgically created in the calvarium of the same animal. The gene-activated muscle graft was then implanted into the cranial defect. After 8 weeks, crania were examined radiographically, histologically, and by micro-computed tomography and dual energy X-ray absorptiometry. Although none of the defects were completely healed in this time, muscle grafts expressing BMP-2 deposited more than twice as much new bone as controls. Histology confirmed the anatomical integrity of the newly formed bone, which was comparable in thickness and mineral density to the original cranial bone. This study confirms the in vivo osteogenic properties of genetically modified muscle and suggests novel strategies for healing bone. � 2011 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 30:1095–1102, 2012
Resumo:
Objectives ANTXR2 variants have been associated with ankylosing spondylitis (AS) in two previous genome-wide association studies (GWAS) (p∼9×10-8). However, a genome-wide significant association (p<5×10-8) was not observed. We conducted a more comprehensive analysis of ANTXR2 in an independent UK sample to confirm and refine this association. Methods A replication study was carried out with 2978 cases and 8365 controls. Then, these were combined with non-overlapping samples from the two previous GWAS in a meta-analysis. Human leukocyte antigen (HLA)-B27 stratification was also performed to test for ANTXR2-HLA-B27 interaction. Results Out of nine single nucleotide polymorphisms (SNP) in the study, five SNPs were nominally associated (p<0.05) with AS in the replication dataset. In the meta-analysis, eight SNPs showed evidence of association, the strongest being with rs12504282 (OR=0.88, p=6.7×10-9). Seven of these SNPs showed evidence for association in the HLA-B27-positive subgroup, but none was associated with HLA-B27-negative AS. However, no statistically significant interaction was detected between HLA-B27 and ANTXR2 variants. Conclusions ANTXR2 variants are clearly associated with AS. The top SNPs from two previous GWAS (rs4333130 and rs4389526) and this study (rs12504282) are in strong linkage disequilibrium (r2≥0.76). All are located near a putative regulatory region. Further studies are required to clarify the role played by these ANTXR2 variants in AS.
Resumo:
Objectives: The aim of the current study was to determine the contribution of interleukin (IL) 1 gene cluster polymorphisms previously implicated in susceptibility for ankylosing spondylitis (AS) to AS susceptibility in different populations worldwide. Methods: Nine polymorphisms in the IL1 gene cluster members IL1A (rs2856836, rs17561 and rs1894399), IL1B (rs16944), IL1F10 (rs3811058) and IL1RN (rs419598, the IL1RA VNTR, rs315952 and rs315951) were genotyped in 2675 AS cases and 2592 healthy controls recruited in 12 different centres in 10 countries. Association of variants with AS was tested by Mantel-Haenszel random effects analysis. Results: Strong association was observed with three single nucleotide polymorphisms (SNPs) in the IL1A gene (rs2856836, rs17561, rs1894399, p = 0.0036, 0.000019 and 0.0003, respectively). There was no evidence of significant heterogeneity of effects between centres, and no evidence of non-combinability of findings. The population attributable risk fraction of these variants in Caucasians is estimated at 4-6%. Conclusions: This study confirms that IL1A is associated with susceptibility to AS. Association of the other IL1 gene complex members could not be excluded in specific populations. Prospective meta-analysis is a useful tool in confirmation studies of genes associated with complex genetic disorders such as AS, providing sufficiently large sample sizes to produce robust findings often not achieved in smaller individual cohorts.
Resumo:
Alcohol consumption is a moderately heritable trait, but the genetic basis in humans is largely unknown, despite its clinical and societal importance. We report a genome-wide association study meta-analysis of approximately 2.5 million directly genotyped or imputed SNPs with alcohol consumption (gram per day per kilogram body weight) among 12 population-based samples of European ancestry, comprising 26,316 individuals, with replication genotyping in an additional 21,185 individuals. SNP rs6943555 in autism susceptibility candidate 2 gene (AUTS2) was associated with alcohol consumption at genome-wide significance (P = 4 x 10(-8) to P = 4 x 10(-9)). We found a genotype-specific expression of AUTS2 in 96 human prefrontal cortex samples (P = 0.026) and significant (P < 0.017) differences in expression of AUTS2 in whole-brain extracts of mice selected for differences in voluntary alcohol consumption. Down-regulation of an AUTS2 homolog caused reduced alcohol sensitivity in Drosophila (P < 0.001). Our finding of a regulator of alcohol consumption adds knowledge to our understanding of genetic mechanisms influencing alcohol drinking behavior.
Resumo:
BACKGROUND: Enterococcus faecalis and Enterococcus faecium are associated with faecal pollution of water, linked to swimmer-associated gastroenteritis and demonstrate a wide range of antibiotic resistance. The Coomera River is a main water source for the Pimpama-Coomera watershed and is located in South East Queensland, Australia, which is used intensively for agriculture and recreational purposes. This study investigated the diversity of E. faecalis and E. faecium using Single Nucleotide Polymorphisms (SNPs) and associated antibiotic resistance profiles. RESULTS: Total enterococcal counts (cfu/ml) for three/six sampling sites were above the United States Environmental Protection Agency (USEPA) recommended level during rainfall periods and fall into categories B and C of the Australian National Health and Medical Research Council (NHMRC) guidelines (with a 1-10% gastrointestinal illness risk). E. faecalis and E. faecium isolates were grouped into 29 and 23 SNP profiles (validated by MLST analysis) respectively. This study showed the high diversity of E. faecalis and E. faecium over a period of two years and both human-related and human-specific SNP profiles were identified. 81.8% of E. faecalis and 70.21% of E. faecium SNP profiles were associated with genotypic and phenotypic antibiotic resistance. Gentamicin resistance was higher in E. faecalis (47% resistant) and harboured the aac(6')-aph(2') gene. Ciprofloxacin resistance was more common in E. faecium (12.7% resistant) and gyrA gene mutations were detected in these isolates. Tetracycline resistance was less common in both species while tet(L) and tet(M) genes were more prevalent. Ampicillin resistance was only found in E. faecium isolates with mutations in the pbp5 gene. Vancomycin resistance was not detected in any of the isolates. We found that antibiotic resistance profiles further sub-divided the SNP profiles of both E. faecalis and E. faecium. CONCLUSIONS: The distribution of E. faecalis and E. faecium genotypes is highly diverse in the Coomera River. The SNP genotyping method is rapid and robust and can be applied to study the diversity of E. faecalis and E. faecium in waterways. It can also be used to test for human-related and human-specific enterococci in water. The resolving power can be increased by including antibiotic-resistant profiles which can be used as a possible source tracking tool. This warrants further investigation.
Resumo:
Exogenous prostacyclin is effective in reducing pulmonary vascular resistance in some forms of human pulmonary hypertension (PH). To explore whether endogenous prostaglandins played a similar role in pulmonary hypertension, we examined the effect of deleting cyclooxygenase (COX)-gene isoforms in a chronic hypoxia model of PH. Pulmonary hypertension, examined by direct measurement of right ventricular end systolic pressure (RVESP), right ventricular hypertrophy (n = 8), and hematocrit (n = 3), was induced by 3 weeks of hypobarichypoxia in wild-type and COX-knockout (KO) mice. RVESP was increased in wild-type hypoxic mice compared with normoxic controls (24.4 ± 1.4 versus 13.8 ± 1.9 mm Hg; n = 8; p < 0.05). COX-2 KO mice showed a greater increase in RVESP following hypoxia (36.8 ± 2.7 mm Hg; p < 0.05). Urinary thromboxane (TX)B2 excretion increased following hypoxia (44.6 ± 11.1 versus 14.7 ± 1.8 ng/ml; n = 6; p < 0.05), an effect that was exacerbated by COX-2 gene disruption (54.5 ± 10.8 ng/ml; n = 6). In contrast, the increase in 6-keto-prostacyclin1α excretion following hypoxia was reduced by COX-2 gene disruption (29 ± 3 versus 52 ± 4.6 ng/ml; p < 0.01). Tail cut bleed times were lower following hypoxia, and there was evidence of intravascular thrombosis in lung vessels that was exacerbated by disruption of COX-2 and reduced by deletion of COX-1. The TXA2/endoperoxide receptor antagonist ifetroban (50 mg/kg/day) offset the effect of deleting the COX-2 gene, attenuating the hypoxia-induced rise in RVESP and intravascular thrombosis. COX-2 gene deletion exacerbates pulmonary hypertension, enhances sensitivity to TXA2, and induces intravascular thrombosis in response to hypoxia. The data provide evidence that endogenous prostaglandins modulate the pulmonary response to hypoxia. Copyright © 2008 by The American Society for Pharmacology and Experimental Therapeutics.
Resumo:
Tumour angiogenesis has been recently recognised as one of the most important prognostic factors in lung cancer. Although a variety of angiogenic factors have been identified, the angiogenesis process remains poorly understood. Bcl-2, c-erbB-2 and p53 are well-known oncogenes involved in non- small-cell lung cancer pathogenesis. A direct correlation of thymidine phosphorylase (TP) and of vascular endothelial growth factor (VEGF) with intratumoural angiogenesis has been reported. In the present study we investigated the possible regulatory role if bcl-2, c-erB-2 proteins in angiogenesis and in VEGF and TP expression in non-small-cell lung cancer. Two hundred sixteen specimens from T1,2-NO, 1 staged patients treated with surgery alone were immunohistochemically examined. Bcl-2 and c-erbB-2 were significantly inversely related to each other (P = 0.04) and both were inversely associated with microvessel density (P < 0.02). High TP and VEGF reactivity was statistically related to loss of bcl-2 expression (P < 0.01). A significant co-expression of c-erbB-2 with TP was noted (P = 0.01). However, TP expression was related to high angiogenesis only in cases with absence of c-erB-2 expression (P < 0.0001). c-erbB-2 expression in poorly vascularised tumours was linked with poor outcome (P = 0.03). The present study provides strong evidence that the bcl-2 gene has a suppressive function over genes involved in both angiogenesis (VEGF and TP) and cell migration (c- erbB-2) in NSCLC. TP and c-erbB-2 proteins are significantly, and often simultaneously, expressed in bcl-2 negative cases. However, expression of the c-erbB-2 abolishes the TP-related angiogenic activity. Whether this is a result of a direct activity of the c-erbB-2 protein or a consequence of a c- erbB-2-related immune response remains to be further investigated.
Resumo:
The link between chronic immune activation and tumorigenesis is well established. Compelling evidence has accumulated that histologic assessment of infiltration patterns of different host immune response components in non-small cell lung cancer specimens helps identify different prognostic patient subgroups. This review provides an overview of recent insights gained in the understanding of the role played by chronic inflammation in lung carcinogenesis. The usefulness of quantification of different populations of lymphocytes, natural killer cells, macrophages, and mast cells within the tumor microenvironment in non-small cell lung cancer is also discussed. In particular, the importance of assessment of inflammatory cell microlocalization within both the tumor islet and surrounding stromal components is emphasized. Copyright © 2010 by the International Association for the Study of Lung Cancer.
Resumo:
The epidermal growth factor receptor (EGFR) is part of a family of plasma membrane receptor tyrosine kinases that control many important cellular functions, from growth and proliferation to cell death. Cyclooxygenase (COX)-2 is an enzyme which catalyses the conversion of arachidonic acid to prostagladins and thromboxane. It is induced by various inflammatory stimuli, including the pro-inflammatory cytokines, Interleukin (IL)-1β, Tumour Necrosis Factor (TNF)-α and IL-2. Both EGFR and COX-2 are over-expressed in non-small cell lung cancer (NSCLC) and have been implicated in the early stages of tumourigenesis. This paper considers their roles in the development and progression of lung cancer, their potential interactions, and reviews the recent progress in cancer therapies that are directed toward these targets. An increasing body of evidence suggests that selective inhibitors of both EGFR and COX-2 are potential therapeutic agents for the treatment of NSCLC, in the adjuvant, metastatic and chemopreventative settings. © 2002 Elsevier Science Ireland Ltd. All rights reserved.
Resumo:
For the past decade, an attempt has been made by many research groups to define the roles of the growing number of Bcl-2 gene family proteins in the apoptotic process. The Bcl-2 family consists of pro-apoptotic (or cell death) and anti-apoptotic (or cell survival) genes and it is the balance in expression between these gene lineages that may determine the death or survival of a cell. The majority of studies have analysed the role/s of the Bcl-2 genes in cancer development. Equally important is their role in normal tissue development, homeostasis and non-cancer disease states. Bcl-2 is crucial for normal development in the kidney, with a deficiency in Bcl-2 producing such malformation that renal failure and death result. As a corollary, its role in renal disease states in the adult has been sought. Ischaemia is one of the most common causes of both acute and chronic renal failure. The section of the kidney that is most susceptible to ischaemic damage is the outer zone of the outer medulla. Within this zone the proximal tubules are most sensitive and often die by necrosis or desquamate. In the distal nephron, apoptosis is the more common form of cell death. Recent results from our laboratory have indicated that ischaemia-induced acute renal failure is associated with up-regulation of two anti-apoptotic Bcl-2 proteins (Bcl-2 and Bcl-XL) in the damaged distal tubule and occasional up-regulation of Bax in the proximal tubule. The distal tubule is a known reservoir for several growth factors important to renal growth and repair, such as insulin-like growth factor-1 (IGF-1) and epidermal growth factor (EGF). One of the likely possibilities for the anti-cell death action of the Bcl-2 genes is that the protected distal cells may be able to produce growth factors that have a further reparative or protective role via an autocrine mechanism in the distal segment and a paracrine mechanism in the proximal cells. Both EGF and IGF-1 are also up-regulated in the surviving distal tubules and are detected in the surviving proximal tubules, where these growth factors are not usually synthesized. As a result, we have been using in vitro methods to test: (i) the relative sensitivities of renal distal and proximal epithelial cell populations to injury caused by mechanisms known to act in ischaemia-reperfusion; (ii) whether a Bcl-2 anti-apoptotic mechanism acts in these cells; and (iii) whether an autocrine and/or paracrine growth factor mechanism is initiated. The following review discusses the background to these studies as well as some of our preliminary results.
Resumo:
JS-2 is a novel gene located at 5p15.2 and originally detected in primary oesophageal cancer. There is no study on the role of JS-2 in colorectal cancer. The aim of this study is to determine the gene copy number and expression of JS-2 in a large cohort of patients with colorectal tumours and correlate these to the clinicopathological features of the cancer patients. We evaluated the DNA copy number and mRNA expression of JS-2 in 176 colorectal tissues (116 adenocarcinomas, 30 adenomas and 30 non-neoplastic tissues) using real-time polymerase chain reaction. JS-2 expression was also evaluated in two colorectal cancer cell lines and a benign colorectal cell line. JS-2 amplification was noted in 35% of the colorectal adenocarcinomas. Significant differences in relative expression levels for JS-2 mRNA between different colorectal tissues were noted (p = 0.05). Distal colorectal adenocarcinoma had significantly higher copy number than proximal adenocarcinoma (p = 0.005). The relative expression level of JS-2 was different between colonic and rectal adenocarcinoma (p = 0.007). Mucinous adenocarcinoma showed higher JS-2 expression than non-mucinous adenocarcinoma (p = 0.02). Early T-stage cancers appear to have higher JS-2 copy number and lower expression of JS-2 mRNA than later stage cancers (p = 0.001 and 0.03 respectively). Colorectal cancer cell lines showed lower expression of JS-2 than the benign colorectal cell line. JS-2 copy number change and expression were shown for the first time to be altered in the carcinogenesis of colorectal cancer. In addition, genetic alteration of JS-2 was found to be related to location, pathological subtypes and staging of colorectal cancer.
Resumo:
To further investigate susceptibility loci identified by genome-wide association studies, we genotyped 5,500 SNPs across 14 associated regions in 8,000 samples from a control group and 3 diseases: type 2 diabetes (T2D), coronary artery disease (CAD) and Graves' disease. We defined, using Bayes theorem, credible sets of SNPs that were 95% likely, based on posterior probability, to contain the causal disease-associated SNPs. In 3 of the 14 regions, TCF7L2 (T2D), CTLA4 (Graves' disease) and CDKN2A-CDKN2B (T2D), much of the posterior probability rested on a single SNP, and, in 4 other regions (CDKN2A-CDKN2B (CAD) and CDKAL1, FTO and HHEX (T2D)), the 95% sets were small, thereby excluding most SNPs as potentially causal. Very few SNPs in our credible sets had annotated functions, illustrating the limitations in understanding the mechanisms underlying susceptibility to common diseases. Our results also show the value of more detailed mapping to target sequences for functional studies. © 2012 Nature America, Inc. All rights reserved.