132 resultados para Interfaces (Physical sciences)
em Queensland University of Technology - ePrints Archive
Resumo:
Science and technology are promoted as major contributors to national development. Consequently, improved science education has been placed high on the agenda of tasks to be tackled in many developing countries, although progress has often been limited. In fact there have been claims that the enormous investment in teaching science in developing countries has basically failed, with many reports of how efforts to teach science in developing countries often result in rote learning of strange concepts, mere copying of factual information, and a general lack of understanding on the part of local students. These generalisations can be applied to science education in Fiji. Muralidhar (1989) has described a situation in which upper primary and middle school students in Fiji were given little opportunity to engage in practical work; an extremely didactic form of teacher exposition was the predominant method of instruction during science lessons. He concluded that amongst other things, teachers' limited understanding, particularly of aspects of physical science, resulted in their rigid adherence to the text book or the omission of certain activities or topics. Although many of the problems associated with science education in developing countries have been documented, few attempts have been made to understand how non-Western students might better learn science. This study addresses the issue of Fiji pre-service primary teachers' understanding of a key aspect of physical science, namely, matter and how it changes, and their responses to learning experiences based on a constructivist epistemology. Initial interviews were used to probe pre-service primary teachers' understanding of this domain of science. The data were analysed to identify students' alternative and scientific conceptions. These conceptions were then used to construct Concept Profile Inventories (CPI) which allowed for qualitative comparison of the concepts of the two ethnic groups who took part in the study. This phase of the study also provided some insight into the interaction of scientific information and traditional beliefs in non-Western societies. A quantitative comparison of the groups' conceptions was conducted using a Science Concept Survey instrument developed from the CPis. These data provided considerable insight into the aspects of matter where the pre-service teachers' understanding was particularly weak. On the basis of these preliminary findings, a six-week teaching program aimed at improving the students' understanding of matter was implemented in an experimental design with a group of students. The intervention involved elements of pedagogy such as the use of analogies and concept maps which were novel to most of those who took part. At the conclusion of the teaching programme, the learning outcomes of the experimental group were compared with those of a control group taught in a more traditional manner. These outcomes were assessed quantitatively by means of pre- and post-tests and a delayed post-test, and qualitatively using an interview protocol. The students' views on the various teaching strategies used with the experimental group were also sought. The findings indicate that in the domain of matter little variation exists in the alternative conceptions held by Fijian and Indian students suggesting that cultural influences may be minimal in their construction. Furthermore, the teaching strategies implemented with the experimental group of students, although largely derived from Western research, showed considerable promise in the context of Fiji, where they appeared to be effective in improving the understanding of students from different cultural backgrounds. These outcomes may be of significance to those involved in teacher education and curriculum development in other developing countries.
Resumo:
“What did you think you were doing?” Was the question posed by the conference organizers to me as the inventor and constructor of the first working Tangible Interfaces over 40 years ago. I think the question was intended to encourage me to talk about the underlying ideas and intentionality rather than describe an endless sequence of electronic bricks and that is what I shall do in this presentation. In the sixties the prevalent idea for a graphics interface was an analogue with sketching which was to somehow be understood by the computer as three dimensional form. I rebelled against this notion for reasons which I will explain in the presentation and instead came up with tangible physical three dimensional intelligent objects. I called these first prototypes “Intelligent Physical Modelling Systems” which is a really dumb name for an obvious concept. I am eternally grateful to Hiroshi Ishii for coining the term “Tangible User Interfaces” - the same idea but with a much smarter name. Another motivator was user involvement in the design process, and that led to the Generator (1979) project with Cedric Price for the world’s first intelligent building capable of organizing itself in response to the appetites of the users. The working model of that project is in MoMA. And the same motivation led to a self builders design kit (1980) for Walter Segal which facilitated self-builders to design their own houses. And indeed as the organizer’s question implied, the motivation and intentionality of these projects developed over the years in step with advancing technology. The speaker will attempt to articulate these changes with medical, psychological and educational examples. Much of this later work indeed stemming from the Media Lab where we are talking. Related topics such as “tangible thinking” and “intelligent teacups” will be introduced and the presentation will end with some speculations for the future. The presentation will be given against a background of images of early prototypes many of which have never been previously published.
Resumo:
In this paper, we investigate theoretically and numerically the efficiency of energy coupling from a plasmon generated by a grating coupler at one of the interfaces of a metal wedge into the plasmonic eigenmode (i.e., symmetric or quasisymmetric plasmon) experiencing nanofocusing in the wedge. Thus the energy efficiency of energy coupling into metallic nanofocusing structure is analyzed. Two different nanofocusing structures with the metal wedge surrounded by a uniform dielectric (symmetric structure) and with the metal wedge enclosed between a substrate and a cladding with different dielectricpermittivities (asymmetric structure) are considered by means of the geometrical optics (adiabatic) approximation. It is demonstrated that the efficiency of the energy coupling from the plasmon generated by the grating into the symmetric or quasisymmetric plasmon experiencing nanofocusing may vary between ∼50% to ∼100%. In particular, even a very small difference (of ∼1%–2%) between the permittivities of the substrate and the cladding may result in a significant increase in the efficiency of the energy coupling (from ∼50% up to ∼100%) into the plasmon experiencing nanofocusing. Distinct beat patterns produced by the interference of the symmetric (quasisymmetric) and antisymmetric (quasiantisymmetric) plasmons are predicted and analyzed with significant oscillations of the magnetic and electric field amplitudes at both the metal wedge interfaces. Physical interpretations of the predicted effects are based upon the behavior, dispersion, and dissipation of the symmetric (quasisymmetric) and antisymmetric (quasiantisymmetric) filmplasmons in the nanofocusing metal wedge. The obtained results will be important for optimizing metallic nanofocusing structures and minimizing coupling and dissipative losses.
Resumo:
The celebrated work of Lortie (1975) alerted teacher educators to the extended period of 'apprenticeship' that student teachers have been through before they arrive at teacher education programmes. The subjective implicit theories (Marland, 1992) developed by prospective teachers are shaped by their lifeworld experiences at school and in the case of physical education teachers, their experiences in sport. The biography of physical education teacher education (PETE) students tends to be characterised by ecto-mesomorphic individuals who have been socialised by the rigours of highly competitive sport (Gore, 1990; Macdonald, 1992; Rossi, 1996). We can add to this, the requirements of teacher preparation in physical education which for the most part are dominated by the traditions and rhetoric of the 'natural' bio-physical sciences; largely a legacy of Henry's (1964) work on physical education as an academic discipline, as well as that of Abernathy and Waltz the same year (Abernathy & Waltz, 1964). In the United Kingdom, Curl (1973) further advanced the argument in an attempt to justify human movement as an independent field of study with its own corpus of knowledge. It is little wonder then, that the dominant pedagogical discourse in physical education is, as Tinning (1991) discusses, one of performance pedagogy (see also Hendry, 1986 for an earlier discussion). The knowledge required to support such a discourse could be described as 'official' (Apple, 1993) and it assumes such status by virtue of the power appropriated by and bestowed upon the scientific community in PETE (Macdonald & Tinning, 1995; Sparkes, 1989, 1993). However, there are social reifiers too, and these tend to relate to the social construction of the body (Kirk, 1993; Kirk & Spiller, 1994; Gilroy, 1994) and what Tinning (1985) has termed the Cult of Slenderness. Furthermore the 'slender image' has become a signifier of 'good health'. This is inextricably linked to what might be considered as a health triplex—'exercise = fitness = health' (see Kirk & Colquhoun, 1989; Tinning & Kirk, 1991) which in Australia, underpins curriculum packages such as Daily Physical Education which teachers (often including physical education primary...
Resumo:
This paper reports and discusses findings from a recent study which explored the science enrolment decisions of high achieving, or ‘science proficient’ secondary level students in Australia (Lyons 2003). The research was prompted by the increasing reluctance of such students to enrol in postcompulsory science courses, particularly in physics and chemistry. The study investigated the influences on students’ deliberations about taking a range of science courses. However, this report confines itself to decisions about enrolling in the physical sciences. The paper summarises the students’ experiences and conceptions of school science, as well as the characteristics of their ‘family worlds’ found to be influential in their decisions1. The paper discusses the important roles of cultural and social capital in these decisions, and concludes that enrolment in physical science courses was associated with congruence between the students’ conceptions of school science, and characteristics of their family backgrounds.
Resumo:
Air pollution levels were monitored continuously over a period of 4 weeks at four sampling sites along a busy urban corridor in Brisbane. The selected sites were representative of industrial and residential types of urban environment affected by vehicular traffic emissions. The concentration levels of submicrometer particle number, PM2.5, PM10, CO, and NOx were measured 5-10 meters from the road. Meteorological parameters and traffic flow rates were also monitored. The data were analysed in terms of the relationship between monitored pollutants and existing ambient air quality standards. The results indicate that the concentration levels of all pollutants exceeded the ambient air background levels, in certain cases by up to an order of magnitude. While the 24-hr average concentration levels did not exceed the standard, estimates for the annual averages were close to, or even higher than the annual standard levels.