15 resultados para Intercropping epochs
em Queensland University of Technology - ePrints Archive
Resumo:
Fundamental Sounds was a live, intercultural and multidisciplinary concert that presented a new synthesis of music, performance & visual arts addressing the imperative of sustainability in a new and evocative form. The outcome was a ninety-minute concert, performed at a major concert hall venue, involving four live musicians, numerous performers & large-scale projections. The images and the concert were scripted in three key phases that spoke to three epochs of human evolution identified by ontological designer and futurist Tony Fry - ‘Pre-Settlement’, ‘Settlement’ and the era that he suggests that we have now entered – ‘Unsettlement’ (in mind body and spirit). The entire work was professionally recorded for presentation on DVD and audio CD.----- Fundamental Sounds achieved a new synthesis between quality performance forms and cogent critical ideas, engendering an increasingly reflective position for audiences around today’s “era of unsettlement” – an epoch Fry has recognized that we must now move to quickly displace through adopting fundamentally sustainable modes of being and becoming.----- The concert was well attended and evoked a range of strong, reflective reactions from its audiences who were also invited to join and participate within a subsequent ‘community of change’ initiated at that time.
Resumo:
In this paper, we present a ∑GIi/D/1/∞ queue with heterogeneous input/output slot times. This queueing model can be regarded as an extension of the ordinary GI/D/1/∞ model. For this ∑GIi/D/1/∞ queue, we assume that several input streams arrive at the system according to different slot times. In other words, there are different slot times for different input/output processes in the queueing model. The queueing model can therefore be used for an ATM multiplexer with heterogeneous input/output link capacities. Several cases of the queueing model are discussed to reflect different relationships among the input/output link capacities of an ATM multiplexer. In the queueing analysis, two approaches: the Markov model and the probability generating function technique, are adopted to develop the queue length distributions observed at different epochs. This model is particularly useful in the performance analysis of ATM multiplexers with heterogeneous input/output link capacities.
Resumo:
Due to the limitation of current condition monitoring technologies, the estimates of asset health states may contain some uncertainties. A maintenance strategy ignoring this uncertainty of asset health state can cause additional costs or downtime. The partially observable Markov decision process (POMDP) is a commonly used approach to derive optimal maintenance strategies when asset health inspections are imperfect. However, existing applications of the POMDP to maintenance decision-making largely adopt the discrete time and state assumptions. The discrete-time assumption requires the health state transitions and maintenance activities only happen at discrete epochs, which cannot model the failure time accurately and is not cost-effective. The discrete health state assumption, on the other hand, may not be elaborate enough to improve the effectiveness of maintenance. To address these limitations, this paper proposes a continuous state partially observable semi-Markov decision process (POSMDP). An algorithm that combines the Monte Carlo-based density projection method and the policy iteration is developed to solve the POSMDP. Different types of maintenance activities (i.e., inspections, replacement, and imperfect maintenance) are considered in this paper. The next maintenance action and the corresponding waiting durations are optimized jointly to minimize the long-run expected cost per unit time and availability. The result of simulation studies shows that the proposed maintenance optimization approach is more cost-effective than maintenance strategies derived by another two approximate methods, when regular inspection intervals are adopted. The simulation study also shows that the maintenance cost can be further reduced by developing maintenance strategies with state-dependent maintenance intervals using the POSMDP. In addition, during the simulation studies the proposed POSMDP shows the ability to adopt a cost-effective strategy structure when multiple types of maintenance activities are involved.
Resumo:
Time-varying bispectra, computed using a classical sliding window short-time Fourier approach, are analyzed for scalp EEG potentials evoked by an auditory stimulus and new observations are presented. A single, short duration tone is presented from the left or the right, direction unknown to the test subject. The subject responds by moving the eyes to the direction of the sound. EEG epochs sampled at 200 Hz for repeated trials are processed between -70 ms and +1200 ms with reference to the stimulus. It is observed that for an ensemble of correctly recognized cases, the best matching timevarying bispectra at (8 Hz, 8Hz) are for PZ-FZ channels and this is also largely the case for grand averages but not for power spectra at 8 Hz. Out of 11 subjects, the only exception for time-varying bispectral match was a subject with family history of Alzheimer’s disease and the difference was in bicoherence, not biphase.
Resumo:
The present study examined the historical basis of the Australian disability income support system from 1908 to 2007. Although designed as a safety net for people with a disability, the disability income support system within Australia has been highly targeted. The original eligibility criteria of "permanently incapacitated for work", medical criteria and later "partially capacitated for work" potentially contained ideological inferences that permeated across the time period. This represents an important area for study given the potential consequence for disability income support to marginalise people with a disability. Social policy and disability policy theorists, including Saunders (2007, Social Policy Research Centre [SPRC]) and Gibilisco (2003) have provided valuable insight into some of the effects of disability policy and poverty. Yet while these theorists argued for some form of income support they did not propose a specific form of income security for further exploration. Few studies have undertaken a comprehensive review of the history of disability income support within the Australian context. This thesis sought to redress these gaps by examining disability income support policy within Australia. The research design consisted of an in-depth critical historical-comparative policy analysis methodology. The use of critical historical-comparative policy analysis allowed the researcher to trace the construction of disability within the Australian disability income support policy across four major historical epochs. A framework was developed specifically to guide analysis of the data. The critical discourse analysis method helped to understand the underlying ideological dimensions that led to the predominance of one particular approach over another. Given this, the research purpose of the study centred on: i. Tracing the history of the Australian disability income support system. ii. Examining the historical patterns and ideological assumptions over time. iii. Exploring the historical patterns and ideological assumptions underpinning an alternative model (Basic Income) and the extent to which each model promotes the social citizenship of people with a disability. The research commitment to a social-relational ontology and the quest for social change centred on the idea that "there has to be a better way" in the provision of disability income support. This theme of searching for an alternative reality in disability income support policy resonated throughout the thesis. This thesis found that the Australian disability income support system is disabling in nature and generates categories of disability on the basis of ableness. From the study, ableness became a condition for citizenship. This study acknowledged that, in reality, income support provision reflects only one aspect of the disabling nature of society which requires redressing. Although there are inherent tensions in any redistributive strategy, the Basic Income model potentially provides an alternative to the Australian disability income support system, given its grounding in social citizenship. The thesis findings have implications for academics, policy-makers and practitioners in terms of developing better ways to understand disability constructs in disability income support policy. The thesis also makes a contribution in terms of promoting income support policies based on the rights of all people, not just a few.
Resumo:
Introduction: Mothers’ sleep during the postpartum period is commonly characterised by bouts of sleep across the night, resulting in low sleep efficiency and daytime sleepiness. Understanding of the nature of mothers’ sleep disruption needs to incorporate indices of both sleep quantity and sleep quality, but objective assessment of sleep disturbance experienced during the first postpartum months has not been investigated in great detail. This longitudinal study aimed to objectively measure mothers’ sleep during the first 18 weeks postpartum, to ascertain the level of sleep disturbance experienced. Method: Eleven mothers (Mean age = 29.82, SD = 4.45) from Australia wore Actiwatch-2 devices for up to 7 days and nights at 6, 12 and 18 weeks postpartum. For each night of recording, a number of sleep bouts were identified. Total sleep time (TST) was calculated as the total number of minutes across the night within these bouts. Sleep efficiency was calculated as the percentage of minutes across the night classified as being part of a sleep bout, with higher scores indicating higher efficiency. Sleep quality captured the efficiency of sleep within sleep bouts, and was calculated as the percentage of epochs classified as sleep within sleep bouts, with higher scores indicating higher sleep quality. Results: At 6 weeks postpartum, mean total sleep time was 420.22 minutes (SD = 50.61). Total sleep time did not significantly differ across the assessment; however there was a trend towards an increase over time. Sleep efficiency increased across the time periods (F(2,10) = 10.30, p = .001), with a significant increase between week 12 and week 18. At 6 weeks postpartum, mean sleep quality was 93.15% (SD = 2.68) and scores did not significantly change across the assessment periods. While there was no relationship between sleep efficiency and sleep quality during weeks 6 and 12, a significant positive relationship was observed at week 18, r2 = .52, p = .013. Conclusions: Within this sample, a low level of disruption was consistently shown within the mothers’ night time sleep bouts. However, overall sleep efficiency suggested a significant proportion of time spent awake between sleep bouts. While TST remained stable over time, overall sleep efficiency improved, suggesting the mothers’ sleep was becoming more consolidated. A single sleep bout a night was not often experienced.
Resumo:
Objective The present study aimed to develop accelerometer cut points to classify physical activities (PA) by intensity in preschoolers and to investigate discrepancies in PA levels when applying various accelerometer cut points. Methods To calibrate the accelerometer, 18 preschoolers (5.8 +/- 0.4 years) performed eleven structured activities and one free play session while wearing a GT1M ActiGraph accelerometer using 15 s epochs. The structured activities were chosen based on the direct observation system Children's Activity Rating Scale (CARS) while the criterion measure of PA intensity during free play was provided using a second-by-second observation protocol (modified CARS). Receiver Operating Characteristic (ROC) curve analyses were used to determine the accelerometer cut points. To examine the classification differences, accelerometer data of four consecutive days from 114 preschoolers (5.5 +/- 0.3 years) were classified by intensity according to previously published and the newly developed accelerometer cut points. Differences in predicted PA levels were evaluated using repeated measures ANOVA and Chi Square test. Results Cut points were identified at 373 counts/15 s for light (sensitivity: 86%; specificity: 91%; Area under ROC curve: 0.95), 585 counts/15 s for moderate (87%; 82%; 0.91) and 881 counts/15 s for vigorous PA (88%; 91%; 0.94). Further, applying various accelerometer cut points to the same data resulted in statistically and biologically significant differences in PA. Conclusions Accelerometer cut points were developed with good discriminatory power for differentiating between PA levels in preschoolers and the choice of accelerometer cut points can result in large discrepancies.
Resumo:
The objective of the research was to determine the optimal location and method of attachment for accelerometer-based motion sensors, and to validate their ability to differentiate rest and increases in speed in healthy dogs moving on a treadmill. Two accelerometers were placed on a harness between the scapulae of dogs with one in a pouch and one directly attached to the harness. Two additional accelerometers were placed (pouched and not pouched) ventrally on the dog's collar. Data were recorded in 1. s epochs with dogs moving in stages lasting 3. min each on a treadmill: (1) at rest, lateral recumbency, (2) treadmill at 0% slope, 3. km/h, (3) treadmill at 0% slope, 5. km/h, (4) treadmill at 0% slope, 7. km/h, (5) treadmill at 5% slope, 5. km/h, and; (6) treadmill at 5% slope, 7. km/h. Only the harness with the accelerometer in a pouch along the dorsal midline yielded statistically significant increases (P< 0.05) in vector magnitude as walking speed of the dogs increased (5-7. km/h) while on the treadmill. Statistically significant increases in vector magnitude were detected in the dogs as the walking speed increased from 5 to 7. km/h, however, changes in vector magnitude were not detected when activity intensity was increased as a result of walking up a 5% grade. Accelerometers are a valid and objective tool able to discriminate between and monitor different levels of activity in dogs in terms of speed of movement but not in energy expenditure that occurs with movement up hill.
Resumo:
Purpose The aim of this study was to assess the predictive validity of three accelerometer prediction equations (Freedson et aL, 1997; Trost et aL, 1998; Puyau et al., 2002) for energy expenditure (EE) during overland walking and running in children and adolescents. Methods 45 healthy children and adolescents aged 10-18 completed the following protocol, each task 5-mins in duration, with a 5-min rest period in between; walking normally; walking briskly; running easily and running fast. During each task participants wore MTI (WAM 7164) Actigraphs on the left and right hips. VO2 was monitored breath by breath using the Cosmed K4b2 portable indirect calorimetry system. For each prediction equation, difference scores were calculated as EE measured minus EE predicted. The percentage of 1-min epochs correctly categorized as light (<3 METs), moderate (3-5.9 METs), and vigorous (≥6 METS) was also calculated. Results The Freedson and Trost equations consistently overestimated MET level. The level of overestimation was statistically significant across all tasks for the Freedson equation, and was significant for only the walking tasks for the Trost equation. The Puyau equation consistently underestimated AEE with the exception of the walking normally task. In terms of categorisation, the Freedson equation (72.8% agreement) demonstrated better agreement than the Puyau (60.6%). Conclusions These data suggest that the three accelerometer prediction equations do not accurately predict EE on a minute-by-minute basis in children and adolescents during overland walking and running. However, the cut points generated by these equations maybe useful for classifying activity as either, light, moderate, or vigorous.
Resumo:
There is an increasing desire and emphasis to integrate assessment tools into the everyday training environment of athletes. These tools are intended to fine-tune athlete development, enhance performance and aid in the development of individualised programmes for athletes. The areas of workload monitoring, skill development and injury assessment are expected to benefit from such tools. This paper describes the development of an instrumented leg press and its application to testing leg dominance with a cohort of athletes. The developed instrumented leg press is a 45° reclining sled-type leg press with dual force plates, a displacement sensor and a CCD camera. A custom software client was developed using C#. The software client enabled near-real-time display of forces beneath each limb together with displacement of the quad track roller system and video feedback of the exercise. In recording mode, the collection of athlete particulars is prompted at the start of the exercise, and pre-set thresholds are used subsequently to separate the data into epochs from each exercise repetition. The leg press was evaluated in a controlled study of a cohort of physically active adults who performed a series of leg press exercises. The leg press exercises were undertaken at a set cadence with nominal applied loads of 50%, 100% and 150% of body weight without feedback. A significant asymmetry in loading of the limbs was observed in healthy adults during both the eccentric and concentric phases of the leg press exercise (P < .05). Mean forces were significantly higher beneath the non-dominant limb (4–10%) and during the concentric phase of the muscle action (5%). Given that symmetrical loading is often emphasized during strength training and remains a common goal in sports rehabilitation, these findings highlight the clinical potential for this instrumented leg press system to monitor symmetry in lower-limb loading during progressive strength training and sports rehabilitation protocols.
Resumo:
Background: Seizures and interictal spikes in mesial temporal lobe epilepsy (MTLE) affect a network of brain regions rather than a single epileptic focus. Simultaneous electroencephalography and functional magnetic resonance imaging (EEG-fMRI) studies have demonstrated a functional network in which hemodynamic changes are time-locked to spikes. However, whether this reflects the propagation of neuronal activity from a focus, or conversely the activation of a network linked to spike generation remains unknown. The functional connectivity (FC) changes prior to spikes may provide information about the connectivity changes that lead to the generation of spikes. We used EEG-fMRI to investigate FC changes immediately prior to the appearance of interictal spikes on EEG in patients with MTLE. Methods/principal findings: Fifteen patients with MTLE underwent continuous EEG-fMRI during rest. Spikes were identified on EEG and three 10 s epochs were defined relative to spike onset: spike (0–10 s), pre-spike (−10 to 0 s), and rest (−20 to −10 s, with no previous spikes in the preceding 45s). Significant spike-related activation in the hippocampus ipsilateral to the seizure focus was found compared to the pre-spike and rest epochs. The peak voxel within the hippocampus ipsilateral to the seizure focus was used as a seed region for FC analysis in the three conditions. A significant change in FC patterns was observed before the appearance of electrographic spikes. Specifically, there was significant loss of coherence between both hippocampi during the pre-spike period compared to spike and rest states. Conclusion/significance: In keeping with previous findings of abnormal inter-hemispheric hippocampal connectivity in MTLE, our findings specifically link reduced connectivity to the period immediately before spikes. This brief decoupling is consistent with a deficit in mutual (inter-hemispheric) hippocampal inhibition that may predispose to spike generation.
Resumo:
The responsiveness to change of the Actical and ActiGraph accelerometers was assessed in children and adolescents. Participants (n=208) aged 6-16 years completed two simulated free-living protocols, one with primarily light-to-moderate physical activities (PA) and one with mostly moderate-to-vigorous PA. Time in sedentary, light, moderate, and vigorous PA was estimated using 8 previously developed cut-points (4 for Actical and 4 for ActiGraph) and 15-s and 30-s epochs. Accelerometer responsiveness for detecting differences in PA between protocols was assessed using standardized response means (SRM). SRM values >/=0.8 represented high responsiveness to change. Both accelerometers showed high responsiveness for all PA intensities (SRMs = 1.2-4.7 for Actical and 1.1-3.3 for ActiGraph). All cut-points and epoch lengths yielded high responsiveness, and choice of cut-points and epoch length had little effect on responsiveness. Thus, both the Actical and ActiGraph can detect change in PA in a simulated free-living setting, irrespective of cut-point selection or epoch length.
Resumo:
Purpose To develop a signal processing paradigm for extracting ERG responses to temporal sinusoidal modulation with contrasts ranging from below perceptual threshold to suprathreshold contrasts. To estimate the magnitude of intrinsic noise in ERG signals at different stimulus contrasts. Methods Photopic test stimuli were generated using a 4-primary Maxwellian view optical system. The 4-primary lights were sinusoidally temporally modulated in-phase (36 Hz; 2.5 - 50% Michelson). The stimuli were presented in 1 s epochs separated by a 1 ms blank interval and repeated 160 times (160.16 s duration) during the recording of the continuous flicker ERG from the right eye using DTL fiber electrodes. After artefact rejection, the ERG signal was extracted using Fourier methods in each of the 1 s epochs where a stimulus was presented. The signal processing allows for computation of the intrinsic noise distribution in addition to the signal to noise (SNR) ratio. Results We provide the initial report that the ERG intrinsic noise distribution is independent of stimulus contrast whereas SNR decreases linearly with decreasing contrast until the noise limit at ~2.5%. The 1ms blank intervals between epochs de-correlated the ERG signal at the line frequency (50 Hz) and thus increased the SNR of the averaged response. We confirm that response amplitude increases linearly with stimulus contrast. The phase response shows a shallow positive relationship with stimulus contrast. Conclusions This new technique will enable recording of intrinsic noise in ERG signals above and below perceptual visual threshold and is suitable for measurement of continuous rod and cone ERGs across a range of temporal frequencies, and post-receptoral processing in the primary retinogeniculate pathways at low stimulus contrasts. The intrinsic noise distribution may have application as a biomarker for detecting changes in disease progression or treatment efficacy.
Resumo:
This article is based on a historical-comparative policy and discourse analysis of the principles underpinning the Australian disability income support system. It determines that these principles rely on a conception of disability that sustains a system of coercion and paternalism that perpetuates disability and referred to as disablism. The article examines the construction of disability in Australian income support across four major historical epochs spanning the period 1908-2007. Contextualisation of the policy trajectory and discourses of the contemporary disability pension regime for the time period 2008-now is also provided. Two major themes were found to have interacted with the ideology of disablism. This article argues that a non-disabling provision based on social citizenship, rather than responsible or productive citizenship, counters the tendency for authoritarian and paternal approaches. [Abridged]
Resumo:
The BeiDou system is the first global navigation satellite system in which all satellites transmit triple-frequency signals that can provide the positioning, navigation, and timing independently. A benefit of triple-frequency signals is that more useful combinations can be formed, including some extrawide-lane combinations whose ambiguities can generally be instantaneously fixed without distance restriction, although the narrow-lane ambiguity resolution (NL AR) still depends on the interreceiver distance or requires a long time to achieve. In this paper, we synthetically study decimeter and centimeter kinematic positioning using BeiDou triple-frequency signals. It starts with AR of two extrawide-lane signals based on the ionosphere-free or ionosphere-reduced geometry-free model. For decimeter positioning, one can immediately use two ambiguity-fixed extrawide-lane observations without pursuing NL AR. To achieve higher accuracy, NL AR is the necessary next step. Despite the fact that long-baseline NL AR is still challenging, some NL ambiguities can indeed be fixed with high reliability. Partial AR for NL signals is acceptable, because as long as some ambiguities for NL signals are fixed, positioning accuracy will be certainly improved.With accumulation of observations, more and more NL ambiguities are fixed and the positioning accuracy continues to improve. An efficient Kalman-filtering system is established to implement the whole process. The formulated system is flexible, since the additional constraints can be easily applied to enhance the model's strength. Numerical results from a set of real triple-frequency BeiDou data on a 50 km baseline show that decimeter positioning is achievable instantaneously.With only five data epochs, 84% of NL ambiguities can be fixed so that the real-time kinematic accuracies are 4.5, 2.5, and 16 cm for north, east, and height components (respectively), while with 10 data epochs more than 90% of NL ambiguities are fixed, and the rea- -time kinematic solutions are improved to centimeter level for all three coordinate components.