3 resultados para Informatica : Transportes

em Queensland University of Technology - ePrints Archive


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The paper has a twofold purpose. First it highlights the importance of accounting information in the economic development of developing countries, with a particular focus on the nation of Libya. Secondly, using the case of Libya's General Company for Pipelines (GCP), it demonstrates that the use of accounting information to achieve economic development goals is determined to a large extent by the political/ideological setting in which it is generated. The study is based on a literature review and archival research, reinforced by a qualitative case study comprised of interviews, attendance at meetings and a study of internal documents. A study of The General Company for Pipelines (GCP) revealed that frequent politically driven changes in the structure and number of popular congresses and committees severely limited the use of accounting information, relegating it to a formal role. In consequence, accounting information had litle effect on stimulating economic development in Libya. This study focuses on one case study which does limit generalisability. However, it also suggests fruitful research areas considering the historic factors which have determined the accounting role in developing and planned economies. By providing insights about social factors which have determined the use of accounting in a planned economy, this study has implications for similar economies as they move towards a more globalised mode of operations which enhance the role of accounting in meeting economic development needs. If devleoping countries are to harness the potential of accounting aid in the achievement of their development plans, the social and political setting in which accounting has been conducted needs to be understood.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nowadays, Workflow Management Systems (WfMSs) and, more generally, Process Management Systems (PMPs) are process-aware Information Systems (PAISs), are widely used to support many human organizational activities, ranging from well-understood, relatively stable and structures processes (supply chain management, postal delivery tracking, etc.) to processes that are more complicated, less structured and may exhibit a high degree of variation (health-care, emergency management, etc.). Every aspect of a business process involves a certain amount of knowledge which may be complex depending on the domain of interest. The adequate representation of this knowledge is determined by the modeling language used. Some processes behave in a way that is well understood, predictable and repeatable: the tasks are clearly delineated and the control flow is straightforward. Recent discussions, however, illustrate the increasing demand for solutions for knowledge-intensive processes, where these characteristics are less applicable. The actors involved in the conduct of a knowledge-intensive process have to deal with a high degree of uncertainty. Tasks may be hard to perform and the order in which they need to be performed may be highly variable. Modeling knowledge-intensive processes can be complex as it may be hard to capture at design-time what knowledge is available at run-time. In realistic environments, for example, actors lack important knowledge at execution time or this knowledge can become obsolete as the process progresses. Even if each actor (at some point) has perfect knowledge of the world, it may not be certain of its beliefs at later points in time, since tasks by other actors may change the world without those changes being perceived. Typically, a knowledge-intensive process cannot be adequately modeled by classical, state of the art process/workflow modeling approaches. In some respect there is a lack of maturity when it comes to capturing the semantic aspects involved, both in terms of reasoning about them. The main focus of the 1st International Workshop on Knowledge-intensive Business processes (KiBP 2012) was investigating how techniques from different fields, such as Artificial Intelligence (AI), Knowledge Representation (KR), Business Process Management (BPM), Service Oriented Computing (SOC), etc., can be combined with the aim of improving the modeling and the enactment phases of a knowledge-intensive process. The 1st International Workshop on Knowledge-intensive Business process (KiBP 2012) was held as part of the program of the 2012 Knowledge Representation & Reasoning International Conference (KR 2012) in Rome, Italy, in June 2012. The workshop was hosted by the Dipartimento di Ingegneria Informatica, Automatica e Gestionale Antonio Ruberti of Sapienza Universita di Roma, with financial support of the University, through grant 2010-C26A107CN9 TESTMED, and the EU Commission through the projects FP7-25888 Greener Buildings and FP7-257899 Smart Vortex. This volume contains the 5 papers accepted and presented at the workshop. Each paper was reviewed by three members of the internationally renowned Program Committee. In addition, a further paper was invted for inclusion in the workshop proceedings and for presentation at the workshop. There were two keynote talks, one by Marlon Dumas (Institute of Computer Science, University of Tartu, Estonia) on "Integrated Data and Process Management: Finally?" and the other by Yves Lesperance (Department of Computer Science and Engineering, York University, Canada) on "A Logic-Based Approach to Business Processes Customization" completed the scientific program. We would like to thank all the Program Committee members for the valuable work in selecting the papers, Andrea Marrella for his valuable work as publication and publicity chair of the workshop, and Carola Aiello and the consulting agency Consulta Umbria for the organization of this successful event.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Behavioral models capture operational principles of real-world or designed systems. Formally, each behavioral model defines the state space of a system, i.e., its states and the principles of state transitions. Such a model is the basis for analysis of the system’s properties. In practice, state spaces of systems are immense, which results in huge computational complexity for their analysis. Behavioral models are typically described as executable graphs, whose execution semantics encodes a state space. The structure theory of behavioral models studies the relations between the structure of a model and the properties of its state space. In this article, we use the connectivity property of graphs to achieve an efficient and extensive discovery of the compositional structure of behavioral models; behavioral models get stepwise decomposed into components with clear structural characteristics and inter-component relations. At each decomposition step, the discovered compositional structure of a model is used for reasoning on properties of the whole state space of the system. The approach is exemplified by means of a concrete behavioral model and verification criterion. That is, we analyze workflow nets, a well-established tool for modeling behavior of distributed systems, with respect to the soundness property, a basic correctness property of workflow nets. Stepwise verification allows the detection of violations of the soundness property by inspecting small portions of a model, thereby considerably reducing the amount of work to be done to perform soundness checks. Besides formal results, we also report on findings from applying our approach to an industry model collection.