14 resultados para Illinois. Military and Naval Dept.
em Queensland University of Technology - ePrints Archive
Resumo:
Background There is no legal requirement for Iranian military truck drivers to undergo regular visual checkups as compared to commercial truck drivers. Objectives This study aimed to evaluate the impact of drivers’ visual checkups by comparing the visual function of Iranian military and commercial truck drivers. Patients and Methods In this comparative cross-sectional study, two hundred military and 200 commercial truck drivers were recruited and their Visual Acuity (VA), Visual Field (VF), color vision and Contrast Sensitivity (CS) were assessed and compared using the Snellen chart, confrontation screening method, D15 test and Pelli-Robson letter chart, respectively. A questionnaire regarding driving exposure and history of motor-vehicle crashes (MVCs) was also filled by drivers. Results were analyzed using an independent samples t-test, one-way ANOVA (assessing difference in number of MVCs across different age groups), chi-square test and Pearson correlation at statistical significance level of P < 0.05. Results Mean age was 41.6 ± 9.2 for the military truck drivers and 43.4 ± 10.9 for commercial truck drivers (P > 0.05). No significant difference between military and commercial drivers was found in terms of driving experience, number of MVCs, binocular VA, frequency of color vision defects and CS scores. In contrast, the last ocular examination was significantly earlier in military drivers than commercial drivers (P < 0.001). In addition, 4% of military drivers did not meet the national standards to drive as opposed to 2% of commercial drivers. There was a significant but weak correlation between binocular VA and age (r = 0.175, P < 0.001). However, CS showed a significantly moderate correlation with age (r = -0.488, P < 0.001). Conclusions The absence of legal requirement for regular eye examination in military drivers caused the incompetent drivers to be missed in contrast to commercial drivers. The need for scientific revision of VA standard for Iranian drivers is also discussed. The CS measurement in visual checkups of older drivers deserves to be investigated more thoroughly.
Resumo:
Uninhabited aerial vehicles (UAVs) are a cutting-edge technology that is at the forefront of aviation/aerospace research and development worldwide. Many consider their current military and defence applications as just a token of their enormous potential. Unlocking and fully exploiting this potential will see UAVs in a multitude of civilian applications and routinely operating alongside piloted aircraft. The key to realising the full potential of UAVs lies in addressing a host of regulatory, public relation, and technological challenges never encountered be- fore. Aircraft collision avoidance is considered to be one of the most important issues to be addressed, given its safety critical nature. The collision avoidance problem can be roughly organised into three areas: 1) Sense; 2) Detect; and 3) Avoid. Sensing is concerned with obtaining accurate and reliable information about other aircraft in the air; detection involves identifying potential collision threats based on available information; avoidance deals with the formulation and execution of appropriate manoeuvres to maintain safe separation. This thesis tackles the detection aspect of collision avoidance, via the development of a target detection algorithm that is capable of real-time operation onboard a UAV platform. One of the key challenges of the detection problem is the need to provide early warning. This translates to detecting potential threats whilst they are still far away, when their presence is likely to be obscured and hidden by noise. Another important consideration is the choice of sensors to capture target information, which has implications for the design and practical implementation of the detection algorithm. The main contributions of the thesis are: 1) the proposal of a dim target detection algorithm combining image morphology and hidden Markov model (HMM) filtering approaches; 2) the novel use of relative entropy rate (RER) concepts for HMM filter design; 3) the characterisation of algorithm detection performance based on simulated data as well as real in-flight target image data; and 4) the demonstration of the proposed algorithm's capacity for real-time target detection. We also consider the extension of HMM filtering techniques and the application of RER concepts for target heading angle estimation. In this thesis we propose a computer-vision based detection solution, due to the commercial-off-the-shelf (COTS) availability of camera hardware and the hardware's relatively low cost, power, and size requirements. The proposed target detection algorithm adopts a two-stage processing paradigm that begins with an image enhancement pre-processing stage followed by a track-before-detect (TBD) temporal processing stage that has been shown to be effective in dim target detection. We compare the performance of two candidate morphological filters for the image pre-processing stage, and propose a multiple hidden Markov model (MHMM) filter for the TBD temporal processing stage. The role of the morphological pre-processing stage is to exploit the spatial features of potential collision threats, while the MHMM filter serves to exploit the temporal characteristics or dynamics. The problem of optimising our proposed MHMM filter has been examined in detail. Our investigation has produced a novel design process for the MHMM filter that exploits information theory and entropy related concepts. The filter design process is posed as a mini-max optimisation problem based on a joint RER cost criterion. We provide proof that this joint RER cost criterion provides a bound on the conditional mean estimate (CME) performance of our MHMM filter, and this in turn establishes a strong theoretical basis connecting our filter design process to filter performance. Through this connection we can intelligently compare and optimise candidate filter models at the design stage, rather than having to resort to time consuming Monte Carlo simulations to gauge the relative performance of candidate designs. Moreover, the underlying entropy concepts are not constrained to any particular model type. This suggests that the RER concepts established here may be generalised to provide a useful design criterion for multiple model filtering approaches outside the class of HMM filters. In this thesis we also evaluate the performance of our proposed target detection algorithm under realistic operation conditions, and give consideration to the practical deployment of the detection algorithm onboard a UAV platform. Two fixed-wing UAVs were engaged to recreate various collision-course scenarios to capture highly realistic vision (from an onboard camera perspective) of the moments leading up to a collision. Based on this collected data, our proposed detection approach was able to detect targets out to distances ranging from about 400m to 900m. These distances, (with some assumptions about closing speeds and aircraft trajectories) translate to an advanced warning ahead of impact that approaches the 12.5 second response time recommended for human pilots. Furthermore, readily available graphic processing unit (GPU) based hardware is exploited for its parallel computing capabilities to demonstrate the practical feasibility of the proposed target detection algorithm. A prototype hardware-in- the-loop system has been found to be capable of achieving data processing rates sufficient for real-time operation. There is also scope for further improvement in performance through code optimisations. Overall, our proposed image-based target detection algorithm offers UAVs a cost-effective real-time target detection capability that is a step forward in ad- dressing the collision avoidance issue that is currently one of the most significant obstacles preventing widespread civilian applications of uninhabited aircraft. We also highlight that the algorithm development process has led to the discovery of a powerful multiple HMM filtering approach and a novel RER-based multiple filter design process. The utility of our multiple HMM filtering approach and RER concepts, however, extend beyond the target detection problem. This is demonstrated by our application of HMM filters and RER concepts to a heading angle estimation problem.
Resumo:
Autonomous underwater vehicles (AUVs) are increasingly used, both in military and civilian applications. These vehicles are limited mainly by the intelligence we give them and the life of their batteries. Research is active to extend vehicle autonomy in both aspects. Our intent is to give the vehicle the ability to adapt its behavior under different mission scenarios (emergency maneuvers versus long duration monitoring). This involves a search for optimal trajectories minimizing time, energy or a combination of both. Despite some success stories in AUV control, optimal control is still a very underdeveloped area. Adaptive control research has contributed to cost minimization problems, but vehicle design has been the driving force for advancement in optimal control research. We look to advance the development of optimal control theory by expanding the motions along which AUVs travel. Traditionally, AUVs have taken the role of performing the long data gathering mission in the open ocean with little to no interaction with their surroundings, MacIver et al. (2004). The AUV is used to find the shipwreck, and the remotely operated vehicle (ROV) handles the exploration up close. AUV mission profiles of this sort are best suited through the use of a torpedo shaped AUV, Bertram and Alvarez (2006), since straight lines and minimal (0 deg - 30 deg) angular displacements are all that are necessary to perform the transects and grid lines for these applications. However, the torpedo shape AUV lacks the ability to perform low-speed maneuvers in cluttered environments, such as autonomous exploration close to the seabed and around obstacles, MacIver et al. (2004). Thus, we consider an agile vehicle capable of movement in six degrees of freedom without any preference of direction.
Resumo:
Community-based treatment and care of people with psychiatric disabilities has meant that they are now more likely to engage in the parenting role. This has led to the development of programs designed to enhance the parenting skills of people with psychiatric disabilities. Evaluation of these programs has been hampered by a paucity of evaluation tools. This study's aim was to develop and trial a tool that examined the parent-child interaction within a group setting, was functional and easy to use, required minimum training and equipment, and had acceptable levels of reliability and validity. The revised tool yielded a single scale with acceptable reliability. It had discriminative validity and concurrent validity with non-independent global ratings of parenting. Sensitivity to change was not investigated. The findings suggest that this method of evaluating parenting is likely to have both clinical and research utility and further investigation of the psychometric properties of the tool is warranted.
Resumo:
This paper provides a commentary on the contribution by Dr Chow who questioned whether the functions of learning are general across all categories of tasks or whether there are some task-particular aspects to the functions of learning in relation to task type. Specifically, they queried whether principles and practice for the acquisition of sport skills are different than what they are for musical, industrial, military and human factors skills. In this commentary we argue that ecological dynamics contains general principles of motor learning that can be instantiated in specific performance contexts to underpin learning design. In this proposal, we highlight the importance of conducting skill acquisition research in sport, rather than relying on empirical outcomes of research from a variety of different performance contexts. Here we discuss how task constraints of different performance contexts (sport, industry, military, music) provide different specific information sources that individuals use to couple their actions when performing and acquiring skills. We conclude by suggesting that his relationship between performance task constraints and learning processes might help explain the traditional emphasis on performance curves and performance outcomes to infer motor learning.
Resumo:
Aerial Vehicles (UAV) has become a significant growing segment of the global aviation industry. These vehicles are developed with the intention of operating in regions where the presence of onboard human pilots is either too risky or unnecessary. Their popularity with both the military and civilian sectors have seen the use of UAVs in a diverse range of applications, from reconnaissance and surveillance tasks for the military, to civilian uses such as aid relief and monitoring tasks. Efficient energy utilisation on an UAV is essential to its functioning, often to achieve the operational goals of range, endurance and other specific mission requirements. Due to the limitations of the space available and the mass budget on the UAV, it is often a delicate balance between the onboard energy available (i.e. fuel) and achieving the operational goals. This paper presents the development of a parallel Hybrid Electric Propulsion System (HEPS) on a small fixed-wing UAV incorporating an Ideal Operating Line (IOL) control strategy. A simulation model of an UAV was developed in the MATLAB Simulink environment, utilising the AeroSim Blockset and the in-built Aerosonde UAV block and its parameters. An IOL analysis of an Aerosonde engine was performed, and the most efficient (i.e. provides greatest torque output at the least fuel consumption) points of operation for this engine were determined. Simulation models of the components in a HEPS were designed and constructed in the MATLAB Simulink environment. It was demonstrated through simulation that an UAV with the current HEPS configuration was capable of achieving a fuel saving of 6.5%, compared to the ICE-only configuration. These components form the basis for the development of a complete simulation model of a Hybrid-Electric UAV (HEUAV).
Imaginging the good Indigenous citizen : race war and the pathology of partiarchal white sovereignty
Resumo:
In June 2007, the Australian federal government sent military and policy into Indigenous communities in the Northern Territory on the premise that sexual abuse of children was rampant and a national crisis. This article draws on Foucault’s work on sovereignty and rights to argue that patriarchal white sovereignty as a regime of power deploys a discourse of pathology in the exercising of sovereign right to subjugate and discipline Indigenous people as good citizens.
Resumo:
Post traumatic stress disorder (PTSD) is a serious medical condition effecting both military and civilian populations. While its etiology remains poorly understood it is characterized by high and prolonged levels of fear responding. One biological unknown is whether individuals expressing high or low conditioned fear memory encode the memory differently and if that difference underlies fear response. In this study we examined cellular mechanisms that underlie high and low conditioned fear behavior by using an advanced intercrossed mouse line (B6D2F1) selected for high and low Pavlovian fear response. A known requirement for consolidation of fear memory, phosphorylated mitogen activated protein kinase (p44/42 (ERK) MAPK (pMAPK)) in the lateral amygdala (LA) is a reliable marker of fear learning-related plasticity. In this study, we asked whether high and low conditioned fear behavior is associated with differential pMAPK expression in the LA and if so, is it due to an increase in neurons expressing pMAPK or increased pMAPK per neuron. To examine this, we quantified pMAPK-expressing neurons in the LA at baseline and following Pavlovian fear conditioning. Results indicate that high fear phenotype mice have more pMAPK-expressing neurons in the LA. This finding suggests that increased endogenous plasticity in the LA may be a component of higher conditioned fear responses and begins to explain at the cellular level how different fear responders encode fear memories. Understanding how high and low fear responders encode fear memory will help identify novel ways in which fear-related illness risk can be better predicted and treated.
Resumo:
2,4,6-trinitrotoluene (TNT) is one of the most commonly used nitro aromatic explosives in landmine, military and mining industry. This article demonstrates rapid and selective identification of TNT by surface-enhanced Raman spectroscopy (SERS) using 6-aminohexanethiol (AHT) as a new recognition molecule. First, Meisenheimer complex formation between AHT and TNT is confirmed by the development of pink colour and appearance of new band around 500 nm in UV-visible spectrum. Solution Raman spectroscopy study also supported the AHT:TNT complex formation by demonstrating changes in the vibrational stretching of AHT molecule between 2800-3000 cm−1. For surface enhanced Raman spectroscopy analysis, a self-assembled monolayer (SAM) of AHT is formed over the gold nanostructure (AuNS) SERS substrate in order to selectively capture TNT onto the surface. Electrochemical desorption and X-ray photoelectron studies are performed over AHT SAM modified surface to examine the presence of free amine groups with appropriate orientation for complex formation. Further, AHT and butanethiol (BT) mixed monolayer system is explored to improve the AHT:TNT complex formation efficiency. Using a 9:1 AHT:BT mixed monolayer, a very low detection limit (LOD) of 100 fM TNT was realized. The new method delivers high selectivity towards TNT over 2,4 DNT and picric acid. Finally, real sample analysis is demonstrated by the extraction and SERS detection of 302 pM of TNT from spiked.
Resumo:
Value Management (VM) has been proven to provide a structured framework, together with supporting tools and techniques that facilitate effective decision-making in many types of projects, thus achieving ‘best value’ for clients. It is identified at International level as a natural career progression for the construction service provider and as an opportunity in developing leading-edge skills. The services offered by contractors and consultants in the construction sector have been expanding. In an increasingly competitive and global marketplace, firms are seeking ways to differentiate their services to ever more knowledgeable and demanding clients. The traditional demarcations have given way, and the old definition of what contractors, designers, engineers and quantity surveyors can, and cannot do in terms of their market offering has changed. Project management, design and cost and safety consultancy services, are being delivered by a diverse range of suppliers. Value management services have been developing in various sectors in industry; from manufacturing to the military and now construction. Given the growing evidence that VM has been successful in delivering value-for-money to the client, VM would appear to be gaining some momentum as an essential management tool in the Malaysian construction sector. The recently issued VM Circular 3/2009 by the Economic Planning Unit Malaysia (EPU) possibly marks a new beginning in public sector client acceptance on the strength of VM in construction. This paper therefore attempts to study the prospects of marketing the benefits of VM by construction service providers, and how it may provide an edge in an increasingly competitive Malaysian construction industry.
Resumo:
In recent years, development of Unmanned Aerial Vehicles (UAV) has become a significant growing segment of the global aviation industry. These vehicles are developed with the intention of operating in regions where the presence of onboard human pilots is either too risky or unnecessary. Their popularity with both the military and civilian sectors have seen the use of UAVs in a diverse range of applications, from reconnaissance and surveillance tasks for the military, to civilian uses such as aid relief and monitoring tasks. Efficient energy utilisation on an UAV is essential to its functioning, often to achieve the operational goals of range, endurance and other specific mission requirements. Due to the limitations of the space available and the mass budget on the UAV, it is often a delicate balance between the onboard energy available (i.e. fuel) and achieving the operational goals. This thesis presents an investigation of methods for increasing the energy efficiency on UAVs. One method is via the development of a Mission Waypoint Optimisation (MWO) procedure for a small fixed-wing UAV, focusing on improving the onboard fuel economy. MWO deals with a pre-specified set of waypoints by modifying the given waypoints within certain limits to achieve its optimisation objectives of minimising/maximising specific parameters. A simulation model of a UAV was developed in the MATLAB Simulink environment, utilising the AeroSim Blockset and the in-built Aerosonde UAV block and its parameters. This simulation model was separately integrated with a multi-objective Evolutionary Algorithm (MOEA) optimiser and a Sequential Quadratic Programming (SQP) solver to perform single-objective and multi-objective optimisation procedures of a set of real-world waypoints in order to minimise the onboard fuel consumption. The results of both procedures show potential in reducing fuel consumption on a UAV in a ight mission. Additionally, a parallel Hybrid-Electric Propulsion System (HEPS) on a small fixedwing UAV incorporating an Ideal Operating Line (IOL) control strategy was developed. An IOL analysis of an Aerosonde engine was performed, and the most efficient (i.e. provides greatest torque output at the least fuel consumption) points of operation for this engine was determined. Simulation models of the components in a HEPS were designed and constructed in the MATLAB Simulink environment. It was demonstrated through simulation that an UAV with the current HEPS configuration was capable of achieving a fuel saving of 6.5%, compared to the ICE-only configuration. These components form the basis for the development of a complete simulation model of a Hybrid-Electric UAV (HEUAV).
Resumo:
Throughout the twentieth century the economics of the Middle East rose and fell many times in response to the external environment, including European de-colonization and the US and former USSR competing to provide military and economic aid after World War II. Throughout these upheavals the Middle East has remained internationally significant politically and economically not least for the region's large reserves of oil and gas, as discussed in the Introduction to this volume. In recent decades, Western nations have moved to invest into the Middle East in the rapidly developing technology, tourism and education industries that have proliferated. For its part, Iran has been the world's fourth largest provider of petroleum and second largest provider of natural gas and, despite years of political unrest, has made rapid expansion into information technology and telecommunications. Increased involvement in the global economy has meant that Iran has invested heavily in education and training and moved to modernize its management practices. Hitherto there has been little academic research into management in either Western or local organizations in Iran. This chapter seeks to address that gap in knowledge by exploring business leadership in Iran, with particular reference to cultural and institutional impacts.
Resumo:
The paper draws on a three year Australian Research Council funded project entitled Sexual Harassment in Australia: Context Outcomes and Prevention. The research to date suggests there is some slippage between legal definitions and community understandings of what constitutes sexual harassment. Moreover, while sexual harassment is often seen by the community and within organisations as the fault of one aberrant individual, in certain workplace contexts sexual harassment is used to ‘police the gender borders’, that is to exclude women and men who do not conform to the dominant workplace gender norms. This type of sexual harassment is a collective form of behaviour often perpetrated by co-workers in male-dominated workplaces which is designed to humiliate ‘outsiders’ so they appear incompetent and will be forced to leave the organisation. While much previous research that has focused on this type of sexual harassment has taken place in military and policing settings, our emerging findings suggest that it is present in a far broader range of workplace contexts. Prevention of this form of sexual harassment is challenging and goes to the heart of organisational culture and work organisation.