398 resultados para INTEGRATING DIRECT-METHODS
em Queensland University of Technology - ePrints Archive
Resumo:
In this paper, we seek to expand the use of direct methods in real-time applications by proposing a vision-based strategy for pose estimation of aerial vehicles. The vast majority of approaches make use of features to estimate motion. Conversely, the strategy we propose is based on a MR (Multi- Resolution) implementation of an image registration technique (Inverse Compositional Image Alignment ICIA) using direct methods. An on-board camera in a downwards-looking configuration, and the assumption of planar scenes, are the bases of the algorithm. The motion between frames (rotation and translation) is recovered by decomposing the frame-to-frame homography obtained by the ICIA algorithm applied to a patch that covers around the 80% of the image. When the visual estimation is required (e.g. GPS drop-out), this motion is integrated with the previous known estimation of the vehicles’ state, obtained from the on-board sensors (GPS/IMU), and the subsequent estimations are based only on the vision-based motion estimations. The proposed strategy is tested with real flight data in representative stages of a flight: cruise, landing, and take-off, being two of those stages considered critical: take-off and landing. The performance of the pose estimation strategy is analyzed by comparing it with the GPS/IMU estimations. Results show correlation between the visual estimation obtained with the MR-ICIA and the GPS/IMU data, that demonstrate that the visual estimation can be used to provide a good approximation of the vehicle’s state when it is required (e.g. GPS drop-outs). In terms of performance, the proposed strategy is able to maintain an estimation of the vehicle’s state for more than one minute, at real-time frame rates based, only on visual information.
Resumo:
Matrix function approximation is a current focus of worldwide interest and finds application in a variety of areas of applied mathematics and statistics. In this thesis we focus on the approximation of A^(-α/2)b, where A ∈ ℝ^(n×n) is a large, sparse symmetric positive definite matrix and b ∈ ℝ^n is a vector. In particular, we will focus on matrix function techniques for sampling from Gaussian Markov random fields in applied statistics and the solution of fractional-in-space partial differential equations. Gaussian Markov random fields (GMRFs) are multivariate normal random variables characterised by a sparse precision (inverse covariance) matrix. GMRFs are popular models in computational spatial statistics as the sparse structure can be exploited, typically through the use of the sparse Cholesky decomposition, to construct fast sampling methods. It is well known, however, that for sufficiently large problems, iterative methods for solving linear systems outperform direct methods. Fractional-in-space partial differential equations arise in models of processes undergoing anomalous diffusion. Unfortunately, as the fractional Laplacian is a non-local operator, numerical methods based on the direct discretisation of these equations typically requires the solution of dense linear systems, which is impractical for fine discretisations. In this thesis, novel applications of Krylov subspace approximations to matrix functions for both of these problems are investigated. Matrix functions arise when sampling from a GMRF by noting that the Cholesky decomposition A = LL^T is, essentially, a `square root' of the precision matrix A. Therefore, we can replace the usual sampling method, which forms x = L^(-T)z, with x = A^(-1/2)z, where z is a vector of independent and identically distributed standard normal random variables. Similarly, the matrix transfer technique can be used to build solutions to the fractional Poisson equation of the form ϕn = A^(-α/2)b, where A is the finite difference approximation to the Laplacian. Hence both applications require the approximation of f(A)b, where f(t) = t^(-α/2) and A is sparse. In this thesis we will compare the Lanczos approximation, the shift-and-invert Lanczos approximation, the extended Krylov subspace method, rational approximations and the restarted Lanczos approximation for approximating matrix functions of this form. A number of new and novel results are presented in this thesis. Firstly, we prove the convergence of the matrix transfer technique for the solution of the fractional Poisson equation and we give conditions by which the finite difference discretisation can be replaced by other methods for discretising the Laplacian. We then investigate a number of methods for approximating matrix functions of the form A^(-α/2)b and investigate stopping criteria for these methods. In particular, we derive a new method for restarting the Lanczos approximation to f(A)b. We then apply these techniques to the problem of sampling from a GMRF and construct a full suite of methods for sampling conditioned on linear constraints and approximating the likelihood. Finally, we consider the problem of sampling from a generalised Matern random field, which combines our techniques for solving fractional-in-space partial differential equations with our method for sampling from GMRFs.
Resumo:
Many contemporary currents in applied linguistics have favored discourse studies within assessment; there have been calls for cross-fertilization with other areas within applied linguistics, critiques of the positivist tradition within language testing research, and the growing impact of Conversation Analysis (CA) and sociocultural theory. This chapter focuses on the resulting increase in discourse-based studies of oral proficiency assessment techniques. These studies initially focused on the traditional oral proficiency interview but have since been extended to new test formats, including paired and group interaction. We discuss the research carried out on a number of factors in the assessment setting, including the role of the interlocutor, candidate, and rater, and the impact of tasks, task performance conditions, and rating criteria. Recent research has also concentrated more specifically on the assessment of pragmatic competence and on the applications of technology within the assessment of spoken language, including the comparability of semidirect and direct methods for such assessment and the use of computer corpora.
Resumo:
The aim of this work was to review the existing instrumental methods to monitor airborne nanoparticle in different types of indoor and outdoor environments in order to detect their presence and to characterise their properties. Firstly the terminology and definitions used in this field are discussed, which is followed by a review of the methods to measure particle physical characteristics including number concentration, size distribution and surface area. An extensive discussion is provided on the direct methods for particle elemental composition measurements, as well as on indirect methods providing information on particle volatility and solubility, and thus in turn on volatile and semivolatile compounds of which the particle is composed. A brief summary of broader considerations related to nanoparticle monitoring in different environments concludes the paper.
Resumo:
The aim of this study was to characterise and quantify the fungal fragment propagules derived and released from several fungal species (Penicillium, Aspergillus niger and Cladosporium cladosporioides) using different generation methods and different air velocities over the colonies. Real time fungal spore fragmentation was investigated using an Ultraviolet Aerodynamic Particle Sizer (UVASP) and a Scanning Mobility Particle Sizer (SMPS). The study showed that there were significant differences (p < 0.01) in the fragmentation percentage between different air velocities for the three generation methods, namely the direct, the fan and the fungal spore source strength tester (FSSST) methods. The percentage of fragmentation also proved to be dependant on fungal species. The study found that there was no fragmentation for any of the fungal species at an air velocity ≤ 0.4 m/s for any method of generation. Fluorescent signals, as well as mathematical determination also showed that the fungal fragments were derived from spores. Correlation analysis showed that the number of released fragments measured by the UVAPS under controlled conditions can be predicted on the basis of the number of spores, for Penicillium and Aspergillus niger, but not for Cladosporium cladosporioides. The fluorescence percentage of fragment samples was found to be significantly different to that of non-fragment samples (p < 0.0001) and the fragment sample fluorescence was always less than that of the non-fragment samples. Size distribution and concentration of fungal fragment particles were investigated qualitatively and quantitatively, by both UVAPS and SMPS, and it was found that the UVAPS was more sensitive than the SMPS for measuring small sample concentrations, and the results obtained from the UVAPS and SMAS were not identical for the same samples.
Resumo:
The ability to assess a commercial building for its impact on the environment at the earliest stage of design is a goal which is achievable by integrating several approaches into a single procedure directly from the 3D CAD representation. Such an approach enables building design professionals to make informed decisions on the environmental impact of building and its alternatives during the design development stage instead of at the post-design stage where options become limited. The indicators of interest are those which relate to consumption of resources and energy, contributions to pollution of air, water and soil, and impacts on the health and wellbeing of people in the built environment as a result of constructing and operating buildings. 3D object-oriented CAD files contain a wealth of building information which can be interrogated for details required for analysis of the performance of a design. The quantities of all components in the building can be automatically obtained from the 3D CAD objects and their constituent materials identified to calculate a complete list of the amounts of all building products such as concrete, steel, timber, plastic etc. When this information is combined with a life cycle inventory database, key internationally recognised environmental indicators can be estimated. Such a fully integrated tool known as LCADesign has been created for automated ecoefficiency assessment of commercial buildings direct from 3D CAD. This paper outlines the key features of LCADesign and its application to environmental assessment of commercial buildings.
Resumo:
This paper describes an approach to introducing fraction concepts using generic software tools such as Microsoft Office's PowerPoint to create "virtual" materials for mathematics teaching and learning. This approach replicates existing concrete materials and integrates virtual materials with current non-computer methods of teaching primary students about fractions. The paper reports a case study of a 12-year-old student, Frank, who had an extremely limited understanding of fractions. Frank also lacked motivation for learning mathematics in general and interacted with his peers in a negative way during mathematics lessons. In just one classroom session involving the seamless integration of off-computer and on-computer activities, Frank acquired a basic understanding of simple common equivalent fractions. Further, he was observed as the session progressed to be an enthusiastic learner who offered to share his learning with his peers. The study's "virtual replication" approach for fractions involves the manipulation of concrete materials (folding paper regions) alongside the manipulation of their virtual equivalent (shading screen regions). As researchers have pointed out, the emergence of new technologies does not mean old technologies become redundant. Learning technologies have not replaced print and oral language or basic mathematical understanding. Instead, they are modifying, reshaping, and blending the ways in which humankind speaks, reads, writes, and works mathematically. Constructivist theories of learning and teaching argue that mathematics understanding is developed from concrete to pictorial to abstract and that, ultimately, mathematics learning and teaching is about refinement and expression of ideas and concepts. Therefore, by seamlessly integrating the use of concrete materials and virtual materials generated by computer software applications, an opportunity arises to enhance the teaching and learning value of both materials.
Resumo:
Research is often characterised as the search for new ideas and understanding. The language of this view privileges the cognitive and intellectual aspects of discovery. However, in the research process theoretical claims are usually evaluated in practice and, indeed, the observations and experiences of practical circumstances often lead to new research questions. This feedback loop between speculation and experimentation is fundamental to research in many disciplines, and is also appropriate for research in the creative arts. In this chapter we will examine how our creative desire for artistic expressivity results in interplay between actions and ideas that direct the development of techniques and approaches for our audio/visual live-coding activities.
Resumo:
Inverse dynamics is the most comprehensive method that gives access to the net joint forces and moments during walking. However it is based on assumptions (i.e., rigid segments linked by ideal joints) and it is known to be sensitive to the input data (e.g., kinematic derivatives, positions of joint centres and centre of pressure, inertial parameters). Alternatively, transducers can be used to measure directly the load applied on the residuum of transfemoral amputees. So, the purpose of this study was to compare the forces and moments applied on a prosthetic knee measured directly with the ones calculated by three inverse dynamics computations - corresponding to 3 and 2 segments, and « ground reaction vector technique » - during the gait of one patient. The maximum RMSEs between the estimated and directly measured forces (i.e., 56 N) and moment (i.e., 5 N.m) were relatively small. However the dynamic outcomes of the prosthetic components (i.e., absorption of the foot, friction and limit stop of the knee) were only partially assessed with inverse dynamic methods.
Resumo:
Despite the advances that have been made in relation to the valuation of commercial, industrial and retail property, there has not been the same progress in relation to the valuation of rural property. Although the majority of rural property valuations also require the valuer to carry out a full analysis of the economic performance of the farming operations, this information is rarely used to assess the value of the property, nor is it even used for a secondary valuation method. Over the past 20 years the nature of rural valuation practice has required rural valuers to undertake studies in both agriculture (farm management) and valuation, especially if carrying out valuation work for financial institutions. The additional farm financial information obtained by rural valuers exceeds that level of information required to value commercial, retail and industrial by the capitalisation of net rent/profit valuation method and is very similar to the level of information required for the valuation of commercial and retail property by the Discounted Cash Flow valuation method. On this basis the valuers specialising in rural valuation practice should have the necessary skills and information to value rural properties by an income valuation method. Although the direct comparison method of valuation has been sufficient in the past to value rural properties the future use of the method as the main valuation method is limited and valuers need to adopt an income valuation method as at least a secondary valuation method to overcome the problems associated with the use of direct comparison as the only rural property valuation method. This paper will review the results of an extensive survey carried out by rural property valuers in New South Wales (NSW), Australia, in relation to the impact of farm management on rural property values and rural property income potential.
Resumo:
As a special type of novel flexible structures, tensegrity holds promise for many potential applications in such fields as materials science, biomechanics, civil and aerospace engineering. Rhombic systems are an important class of tensegrity structures, in which each bar constitutes the longest diagonal of a rhombus of four strings. In this paper, we address the design methods of rhombic structures based on the idea that many tensegrity structures can be constructed by assembling one-bar elementary cells. By analyzing the properties of rhombic cells, we first develop two novel schemes, namely, direct enumeration scheme and cell-substitution scheme. In addition, a facile and efficient method is presented to integrate several rhombic systems into a larger tensegrity structure. To illustrate the applications of these methods, some novel rhombic tensegrity structures are constructed.
Resumo:
Purpose – This paper aims to present a novel rapid prototyping (RP) fabrication methods and preliminary characterization for chitosan scaffolds. Design – A desktop rapid prototyping robot dispensing (RPBOD) system has been developed to fabricate scaffolds for tissue engineering (TE) applications. The system is a computer-controlled four-axis machine with a multiple-dispenser head. Neutralization of the acetic acid by the sodium hydroxide results in a precipitate to form a gel-like chitosan strand. The scaffold properties were characterized by scanning electron microscopy, porosity calculation and compression test. An example of fabrication of a freeform hydrogel scaffold is demonstrated. The required geometric data for the freeform scaffold were obtained from CT-scan images and the dispensing path control data were converted form its volume model. The applications of the scaffolds are discussed based on its potential for TE. Findings – It is shown that the RPBOD system can be interfaced with imaging techniques and computational modeling to produce scaffolds which can be customized in overall size and shape allowing tissue-engineered grafts to be tailored to specific applications or even for individual patients. Research limitations/implications – Important challenges for further research are the incorporation of growth factors, as well as cell seeding into the 3D dispensing plotting materials. Improvements regarding the mechanical properties of the scaffolds are also necessary. Originality/value – One of the important aspects of TE is the design scaffolds. For customized TE, it is essential to be able to fabricate 3D scaffolds of various geometric shapes, in order to repair tissue defects. RP or solid free-form fabrication techniques hold great promise for designing 3D customized scaffolds; yet traditional cell-seeding techniques may not provide enough cell mass for larger constructs. This paper presents a novel attempt to fabricate 3D scaffolds, using hydrogels which in the future can be combined with cells.
Resumo:
Objective The aim of this study was to demonstrate the potential of near-infrared (NIR) spectroscopy for categorizing cartilage degeneration induced in animal models. Method Three models of osteoarthritic degeneration were induced in laboratory rats via one of the following methods: (i) menisectomy (MSX); (ii) anterior cruciate ligament transaction (ACLT); and (iii) intra-articular injection of mono-ido-acetete (1 mg) (MIA), in the right knee joint, with 12 rats per model group. After 8 weeks, the animals were sacrificed and tibial knee joints were collected. A custom-made nearinfrared (NIR) probe of diameter 5 mm was placed on the cartilage surface and spectral data were acquired from each specimen in the wavenumber range 4 000 – 12 500 cm−1. Following spectral data acquisition, the specimens were fixed and Safranin–O staining was performed to assess disease severity based on the Mankin scoring system. Using multivariate statistical analysis based on principal component analysis and partial least squares regression, the spectral data were then related to the Mankinscores of the samples tested. Results Mild to severe degenerative cartilage changes were observed in the subject animals. The ACLT models showed mild cartilage degeneration, MSX models moderate, and MIA severe cartilage degenerative changes both morphologically and histologically. Our result demonstrate that NIR spectroscopic information is capable of separating the cartilage samples into different groups relative to the severity of degeneration, with NIR correlating significantly with their Mankinscore (R2 = 88.85%). Conclusion We conclude that NIR is a viable tool for evaluating articularcartilage health and physical properties such as change in thickness with degeneration.
Resumo:
A paradigm shift is taking place in orthopaedic and reconstructive surgery. This transition from using medical devices and tissue grafts towards the utilization of a tissue engineering approach combines biodegradable scaffolds with cells and/or biological molecules in order to repair and/or regenerate tissues. One of the potential benefits offered by solid freeform fabrication (SFF) technologies is the ability to create such biodegradable scaffolds with highly reproducible architecture and compositional variation across the entire scaffold due to their tightly controlled computer-driven fabrication. Many of these biologically activated materials can induce bone formation at ectopic and orthotopic sites, but they have not yet gained widespread use due to several continuing limitations, including poor mechanical properties, difficulties in intraoperative handling, lack of porosity suitable for cellular and vascular infiltration, and suboptimal degradation characteristics. In this chapter, we define scaffold properties and attempt to provide some broad criteria and constraints for scaffold design and fabrication in combination with growth factors for bone engineering applications. Lastly, we comment on the current and future developments in the field, such as the functionalization of novel composite scaffolds with combinations of growth factors designed to promote cell attachment, cell survival, vascular ingrowth, and osteoinduction.
Resumo:
Cancer poses an undeniable burden to the health and wellbeing of the Australian community. In a recent report commissioned by the Australian Institute for Health and Welfare(AIHW, 2010), one in every two Australians on average will be diagnosed with cancer by the age of 85, making cancer the second leading cause of death in 2007, preceded only by cardiovascular disease. Despite modest decreases in standardised combined cancer mortality over the past few decades, in part due to increased funding and access to screening programs, cancer remains a significant economic burden. In 2010, all cancers accounted for an estimated 19% of the country's total burden of disease, equating to approximately $3:8 billion in direct health system costs (Cancer Council Australia, 2011). Furthermore, there remains established socio-economic and other demographic inequalities in cancer incidence and survival, for example, by indigenous status and rurality. Therefore, in the interests of the nation's health and economic management, there is an immediate need to devise data-driven strategies to not only understand the socio-economic drivers of cancer but also facilitate the implementation of cost-effective resource allocation for cancer management...