68 resultados para IN SITU MODEL
em Queensland University of Technology - ePrints Archive
Resumo:
In situ FT-IR spectroscopy allows the methanol synthesis reaction to be investigated under actual industrial conditions of 503 K and 10 MPa. On Cu/SiO2 catalyst formate species were initially formed which were subsequently hydrogenated to methanol. During the reaction a steady state concentration of formate species persisted on the copper. Additionally, a small quantity of gaseous methane was produced. In contrast, the reaction of CO2 and H2 on ZnO/SiO2 catalyst only resulted in the formation of zinc formate species: no methanol was detected. The interaction of CO2 and H2 with Cu/ZnO/SiO2 catalyst gave formate species on both copper and zinc oxide. Methanol was again formed by the hydrogenation of copper formate species. Steady-state concentrations of copper formate existed under actual industrial reaction conditions, and copper formate is the pivotal intermediate for methanol synthesis. Collation of these results with previous data on copper-based methanol synthesis catalysts allowed the formulation of a reaction mechanism
Resumo:
This paper examines the ground-water flow problem associated with the injection and recovery of certain corrosive fluids into mineral bearing rock. The aim is to dissolve the minerals in situ, and then recover them in solution. In general, it is not possible to recover all the injected fluid, which is of concern economically and environmentally. However, a new strategy is proposed here, that allows all the leaching fluid to be recovered. A mathematical model of the situation is solved approximately using an asymptotic solution, and exactly using a boundary integral approach. Solutions are shown for two-dimensional flow, which is of some practical interest as it is achievable in old mine tunnels, for example.
Resumo:
Background Members of the matrix metalloproteinase (MMP) family of proteases are required for the degradation of the basement membrane and extracellular matrix in both normal and pathological conditions. In vitro, MT1-MMP (MMP-14, membrane type-1-MMP) expression is higher in more invasive human breast cancer (HBC) cell lines, whilst in vivo its expression has been associated with the stroma surrounding breast tumours. MMP-1 (interstitial collagenase) has been associated with MDA-MB-231 invasion in vitro, while MMP-3 (stromelysin-1) has been localised around invasive cells of breast tumours in vivo. As MMPs are not stored intracellularly, the ability to localise their expression to their cells of origin is difficult. Methods We utilised the unique in situ-reverse transcription-polymerase chain reaction (IS-RT-PCR) methodology to localise the in vitro and in vivo gene expression of MT1-MMP, MMP-1 and MMP-3 in human breast cancer. In vitro, MMP induction was examined in the MDA-MB-231 and MCF-7 HBC cell lines following exposure to Concanavalin A (Con A). In vivo, we examined their expression in archival paraffin embedded xenografts derived from a range of HBC cell lines of varied invasive and metastatic potential. Mouse xenografts are heterogenous, containing neoplastic human parenchyma with mouse stroma and vasculature and provide a reproducible in vivo model system correlated to the human disease state. Results In vitro, exposure to Con A increased MT1-MMP gene expression in MDA-MB-231 cells and decreased MT1-MMP gene expression in MCF-7 cells. MMP-1 and MMP-3 gene expression remained unchanged in both cell lines. In vivo, stromal cells recruited into each xenograft demonstrated differences in localised levels of MMP gene expression. Specifically, MDA-MB-231, MDA-MB-435 and Hs578T HBC cell lines are able to influence MMP gene expression in the surrounding stroma. Conclusion We have demonstrated the applicability and sensitivity of IS-RT-PCR for the examination of MMP gene expression both in vitro and in vivo. Induction of MMP gene expression in both the epithelial tumour cells and surrounding stromal cells is associated with increased metastatic potential. Our data demonstrate the contribution of the stroma to epithelial MMP gene expression, and highlight the complexity of the role of MMPs in the stromal-epithelial interactions within breast carcinoma.
Resumo:
The controlled synthesis of nanostructured materials remains an ongoing area of research, especially as the size, shape and composition of nanomaterials can greatly influence their properties and applications. In this work we present the electrodeposition of highly dendritic platinum rich platinum-lead nanostructures, where lead acetate acts as an inorganic shape directing agent via underpotential deposition on the growing electrodeposit. It was found that these nanomaterials readily oxidise at potentials below monolayer oxide formation, which significantly impacts on the methanol electrooxidation reaction and correlates with the incipient hydrous oxide adatom mediator (IHOAM) model of electrocatalysis. Additionally these materials were tested for their surface enhanced Raman scattering (SERS) activity, where the high density of sharp tips provides promise for their application as SERS substrates.
Resumo:
Bone diseases such as rickets and osteoporosis cause significant reduction in bone quantity and quality, which leads to mechanical abnormalities. However, the precise ultrastructural mechanism by which altered bone quality affects mechanical properties is not clearly understood. Here we demonstrate the functional link between altered bone quality (reduced mineralization) and abnormal fibrillar-level mechanics using a novel, real-time synchrotron X-ray nanomechanical imaging method to study a mouse model with rickets due to reduced extrafibrillar mineralization. A previously unreported N-ethyl-N-nitrosourea (ENU) mouse model for hypophosphatemic rickets (Hpr), as a result of missense Trp314Arg mutation of the phosphate regulating gene with homologies to endopeptidase on the X chromosome (Phex) and with features consistent with X-linked hypophosphatemic rickets (XLHR) in man, was investigated using in situ synchrotron small angle X-ray scattering to measure real-time changes in axial periodicity of the nanoscale mineralized fibrils in bone during tensile loading. These determine nanomechanical parameters including fibril elastic modulus and maximum fibril strain. Mineral content was estimated using backscattered electron imaging. A significant reduction of effective fibril modulus and enhancement of maximum fibril strain was found in Hpr mice. Effective fibril modulus and maximum fibril strain in the elastic region increased consistently with age in Hpr and wild-type mice. However, the mean mineral content was ∼21% lower in Hpr mice and was more heterogeneous in its distribution. Our results are consistent with a nanostructural mechanism in which incompletely mineralized fibrils show greater extensibility and lower stiffness, leading to macroscopic outcomes such as greater bone flexibility. Our study demonstrates the value of in situ X-ray nanomechanical imaging in linking the alterations in bone nanostructure to nanoscale mechanical deterioration in a metabolic bone disease. Copyright
Resumo:
The morphological and chemical changes occurring during the thermal decomposition of weddelite, CaC2O4·2H2O, have been followed in real time in a heating stage attached to an Environmental Scanning Electron Microscope operating at a pressure of 2 Torr, with a heating rate of 10 °C/min and an equilibration time of approximately 10 min. The dehydration step around 120 °C and the loss of CO around 425 °C do not involve changes in morphology, but changes in the composition were observed. The final reaction of CaCO3 to CaO while evolving CO2 around 600 °C involved the formation of chains of very small oxide particles pseudomorphic to the original oxalate crystals. The change in chemical composition could only be observed after cooling the sample to 350 °C because of the effects of thermal radiation.
Resumo:
Ceramic membranes were fabricated by in situ synthesis of alumina nanofibres in the pores of an alumina support as a separation layer, and exhibited a high permeation selectivity for bovine serum albumin relative to bovine hemoglobin (over 60 times) and can effectively retain DNA molecules at high fluxes.
Synthesis of 4-arm star poly(L-Lactide) oligomers using an in situ-generated calcium-based initiator
Resumo:
Using an in situ-generated calcium-based initiating species derived from pentaerythritol, the bulk synthesis of well-defined 4-arm star poly(L-lactide) oligomers has been studied in detail. The substitution of the traditional initiator, stannous octoate with calcium hydride allowed the synthesis of oligomers that had both low PDIs and a comparable number of polymeric arms (3.7 – 3.9) to oligomers of similar molecular weight. Investigations into the degree of control observed during the course of the polymerization found that the insolubility of pentaerythritol in molten L-lactide resulted in an uncontrolled polymerization only when the feed mole ratio of L-lactide to pentaerythritol was 13. At feed ratios of 40 and greater, a pseudo-living polymerization was observed. As part of this study, in situ FT-Raman spectroscopy was demonstrated to be a suitable method to monitor the kinetics of the ring-opening polymerization (ROP) of lactide. The advantages of using this technique rather than FT-IR-ATR and 1H NMR for monitoring L-lactide consumption during polymerization are discussed.
Resumo:
Ultraviolet radiation (UV) is the carcinogen that causes the most common malignancy in humans – skin cancer. However, moderate UV exposure is essential for producing vitaminDin our skin. VitaminDincreases the absorption of calcium from the diet, and adequate calcium is necessary for the building and maintenance of bones. Thus, low levels of vitamin D can cause osteomalacia and rickets and contribute to osteoporosis. Emerging evidence also suggests vitamin D may protect against falls, internal cancers, psychiatric conditions, autoimmune diseases and cardiovascular diseases. Since the dominant source of vitamin D is sunlight exposure, there is a need to understand what is a “balanced” level of sun exposure to maintain an adequate level of vitamin D but minimise the risks of eye damage, skin damage and skin cancer resulting from excessive UV exposure. There are many steps in the pathway from incoming solar UV to the eventual vitamin D status of humans (measured as 25-hydroxyvitamin D in the blood), and our knowledge about many of these steps is currently incomplete. This project begins by investigating the levels of UV available for synthesising vitamin D, and how these levels vary across seasons, latitudes and times of the day. The thesis then covers experiments conducted with an in vitro model, which was developed to study several aspects of vitamin D synthesis. Results from the model suggest the relationship between UV dose and vitamin D is not linear. This is an important input into public health messages regarding ‘safe’ UV exposure: larger doses of UV, beyond a certain limit, may not continue to produce vitamin D; however, they will increase the risk of skin cancers and eye damage. The model also showed that, when given identical doses of UV, the amount of vitamin D produced was impacted by temperature. In humans, a temperature-dependent reaction must occur in the top layers of human skin, prior to vitamin D entering the bloodstream. The hypothesis will be raised that cooler temperatures (occurring in winter and at high latitudes) may reduce vitamin D production in humans. Finally, the model has also been used to study the wavelengths of UV thought to be responsible for producing vitamin D. It appears that vitamin D production is limited to a small range of UV wavelengths, which may be narrower than previously thought. Together, these results suggest that further research is needed into the ability of humans to synthesise vitamin D from sunlight. In particular, more information is needed about the dose-response relationship in humans and to investigate the proposed impact of temperature. Having an accurate action spectrum will also be essential for measuring the available levels of vitamin D-effective UV. As this research continues, it will contribute to the scientific evidence-base needed for devising a public health message that will balance the risks of excessive UV exposure with maintaining adequate vitamin D.
Resumo:
Aim: To measure the influence of spherical intraocular lens implantation and conventional myopic laser in situ keratomileusis on peripheral ocular aberrations. Setting: Visual & Ophthalmic Optics Laboratory, School of Optometry & Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia. Methods: Peripheral aberrations were measured using a modified commercial Hartmann-Shack aberrometer across 42° x 32° of the central visual field in 6 subjects after spherical intraocular lens (IOL) implantation and in 6 subjects after conventional laser in situ keratomileusis (LASIK) for myopia. The results were compared with those of age matched emmetropic and myopic control groups. Results: The IOL group showed a greater rate of quadratic change of spherical equivalent refraction across the visual field, higher spherical aberration, and greater rates of change of higher-order root-mean-square aberrations and total root-mean-square aberrations across the visual field than its emmetropic control group. However, coma trends were similar for the two groups. The LASIK group had a greater rate of quadratic change of spherical equivalent refraction across the visual field, higher spherical aberration, the opposite trend in coma across the field, and greater higher-order root-mean-square aberrations and total root-mean-square aberrations than its myopic control group. Conclusion: Spherical IOL implantation and conventional myopia LASIK increase ocular peripheral aberrations. They cause considerable increase in spherical aberration across the visual field. LASIK reverses the sign of the rate of change in coma across the field relative to that of the other groups. Keywords: refractive surgery, LASIK, IOL implantation, aberrations, peripheral aberrations
Resumo:
Cell-cell and cell-matrix interactions play a major role in tumor morphogenesis and cancer metastasis. Therefore, it is crucial to create a model with a biomimetic microenvironment that allows such interactions to fully represent the pathophysiology of a disease for an in vitro study. This is achievable by using three-dimensional (3D) models instead of conventional two-dimensional (2D) cultures with the aid of tissue engineering technology. We are now able to better address the complex intercellular interactions underlying prostate cancer (CaP) bone metastasis through such models. In this study, we assessed the interaction of CaP cells and human osteoblasts (hOBs) within a tissue engineered bone (TEB) construct. Consistent with other in vivo studies, our findings show that intercellular and CaP cell-bone matrix interactions lead to elevated levels of matrix metalloproteinases, steroidogenic enzymes and the CaP biomarker, prostate specific antigen (PSA); all associated with CaP metastasis. Hence, it highlights the physiological relevance of this model. We believe that this model will provide new insights for understanding of the previously poorly understood molecular mechanisms of bone metastasis, which will foster further translational studies, and ultimately offer a potential tool for drug screening. © 2010 Landes Bioscience.