27 resultados para IMMOBILIZED BIOMASS

em Queensland University of Technology - ePrints Archive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Airborne measurements of particle number concentrations from biomass burning were conducted in the Northern Territory, Australia, during June and September campaigns in 2003, which is the early and the late dry season in that region. The airborne measurements were performed along horizontal flight tracks, at several heights in order to gain insight into the particle concentration levels and their variation with height within the lower boundary layer (LBL), upper boundary layer (UBL), and also in the free troposphere (FT). The measurements found that the concentration of particles during the early dry season was lower than that for the late dry season. For the June campaign, the concentration of particles in LBL, UBL, and FT were (685 ± 245) particles/cm3, (365 ± 183) particles/cm3, and (495 ± 45) particle/cm3 respectively. For the September campaign, the concentration of particles were found to be (1233 ± 274) particles/cm3 in the LBL, (651 ± 68) particles/cm3 in the UBL, and (568 ± 70) particles/cm3 in the FT. The particle size distribution measurements indicate that during the late dry season there was no change in the particle size distribution below (LBL) and above the boundary layer (UBL). This indicates that there was possibly some penetration of biomass burning particles into the upper boundary layer. In the free troposphere the particle concentration and size measured during both campaigns were approximately the same.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The indoline dyes D102, D131, D149, and D205 have been characterized when adsorved on fluorine-doped tin oxide (FTO) and TiO2 electrode surfaces. Adsorption from 50:50 acetonitrile - tert-butanol onto flourine-doped tin oxide (FTO) allows approximate Langmuirian binding constants of 6.5 x 10(4), 2.01 x 10(3), 2.0 x 10(4), and 1.5 x 10(4) mol-1 dm3, respectively, to be determined. Voltammetric data obtained in acetonitrile/0.1 M NBu4PF6 indicate reversible on-electron oxidation at Emid = 0.94, 0.91, 0.88, and 0.88 V vs Ag/AgCI(3 M KCI), respectively, with dye aggregation (at high coverage) causing additional peak features at more positive potentials. Slow chemical degradation processes and electron transfer catalysis for iodine oxidation were observed for all four oxidezed indolinium cations. When adsorbed onto TiO2 nanoparticle films (ca. 9nm particle diameter and ca.3/um thickness of FTO0, reversible voltammetric responses with Emid = 1.08, 1.156, 0.92 and 0.95 V vs Ag/AgCI(3 M KCI), respectively, suggest exceptionally fast hole hopping diffusion (with Dapp > 5 x 10(-9) m2 s-1) for adsorbed layers of four indoline dyes, presumably due to pie-pie stacking in surface aggregates. Slow dye degradation is shown to affect charge transport via electron hopping. Spectrelectrochemical data for the adsorbed indoline dyes on FTO-TiO2 revealed a red-shift of absorption peaks after oxidation and the presence of a strong charge transfer band in the near-IR region. The implications of the indoline dye reactivity and fast hole mobility for solar cell devices are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The photocatalytic disinfection of Enterobacter cloacae and Enterobacter coli using microwave (MW), convection hydrothermal (HT) and Degussa P25 titania was investigated in suspension and immobilized reactors. In suspension reactors, MW-treated TiO(2) was the most efficient catalyst (per unit weight of catalyst) for the disinfection of E. cloacae. However, HT-treated TiO(2) was approximately 10 times more efficient than MW or P25 titania for the disinfection of E. coli suspensions in surface water using the immobilized reactor. In immobilized experiments, using surface water a significant amount of photolysis was observed using the MW- and HT-treated films; however, disinfection on P25 films was primarily attributed to photocatalysis. Competitive action of inorganic ions and humic substances for hydroxyl radicals during photocatalytic experiments, as well as humic substances physically screening the cells from UV and hydroxyl radical attack resulted in low rates of disinfection. A decrease in colony size (from 1.5 to 0.3 mm) was noted during photocatalytic experiments. The smaller than average colonies were thought to occur during sublethal (•) OH and O(2) (•-) attack. Catalyst fouling was observed following experiments in surface water and the ability to regenerate the surface was demonstrated using photocatalytic degradation of oxalic acid as a model test system

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biomass and non-food crop residues are seen as relatively low cost and abundant renewable sources capable of making a large contribution to the world’s future energy and chemicals supply. Signifi cant quantities of ethanol are currently produced from biomass via biochemical processes, but thermochemical conversion processes offer greater potential to utilize the entire biomass source to produce a range of products. This chapter will review thermochemical gasifi cation and pyrolysis methods with a focus on hydrothermal liquefaction processes. Hydrothermal liquefaction is the most energetically advantageous thermochemical biomass conversion process. If the target is to produce sustainable liquid fuels and chemicals and reduce the impact of global warming as a result of carbon dioxide, nitrous oxide, and methane emissions (i.e., protect the natural environment), the use of “green” solvents, biocatalysts and heterogeneous catalysts must be the main R&D initiatives. As the biocrude produced from hydrothermal liquefaction is a complex mixture which is relatively viscous, corrosive, and unstable to oxidation (due to the presence of water and oxygenated compounds), additional upgrading processes are required to produce suitable biofuels and chemicals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Qualitative and quantitative measurements of biomass components dissolved in the phosphonium ionic liquids (ILs), trihexyltetradecylphosphonium chloride ([P66614]Cl) and tributylmethylphosphonium methylsulphate ([P4441]MeSO 4), are obtained using attenuated total reflectance-FTIR. Absorption bands related to cellulose, hemicelluloses, and lignin dissolution monitored in situ in biomass-IL mixtures indicate lignin dissolution in both ILs and some holocellulose dissolution in the hydrophilic [P4441]MeSO 4. The kinetics of lignin dissolution reported here indicate that while dissolution in the hydrophobic IL [P66614]Cl appears to follow an accepted mechanism of acid catalyzed -aryl ether cleavage, dissolution in the hydrophilic IL [P4441]MeSO 4 does not appear to follow this mechanism and may not be followed by condensation reactions (initiated by reactive ketones). The measurement of lignin dissolution in phosphonium ILs based on absorbance at 1510 cm 1 has demonstrated utility. When coupled with the gravimetric Klason lignin method, ATR-FTIR study of reaction mixtures can lead to a better understanding of the delignification process. © 2012 Copyright Taylor and Francis Group, LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, the effect of catalyst preparation and additive precursors on the catalytic decomposition of biomass using palygorskite-supported Fe and Ni catalysts was investigated. The catalysts were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). It is concluded that the most active additive precursor was Fe(NO3)3·9H2O. As for the catalyst preparation method, co-precipitation had superiority over incipient wetness impregnation at low Fe loadings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Catalytic CO2 reforming of biomass tar on palygorskite-supported nickel catalysts using toluene as a model compound of biomass tar was investigated. The experiments were performed in a bench scale installation a fixed bed reactor. All experiments were carried out at 650, 750, 800 °C and atmospheric pressure. The effect of Ni loading, reaction temperature and concentration of CO2 on H2 yield and carbon deposit was investigated. Ni/Palygorskite (Ni/PG) catalysts with Ni/PG ratios of 0%, 2%, 5% and 8% were tested, the last two show the best performance. H2 yield and carbon deposit diminished with the increase of reaction temperature, Ni loading, and CO2 concentration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Locally available different bbiomass solid wastes, pine seed, date seed, plum seed, nutshell, hay of catkin, rice husk, jute stick, saw-dust, wheat straw and linseed residue in the particle form have been pyrolyzed in laboratory scale fixed bed reactor. The products obtained are pyrolysis oil, solid char and gas. The oil and char are collected while the gas is flared into atmosphere. The variation of oil yield for different biomass feedstock with reaction parameters like, reactor bed temperature, feed size and running time is presented in a comparative way in the paper. A maximum liquid yield of 55 wt% of dry feedstock is obtained at an optimum temperature of 500 °C for a feed size of 300-600 μm with a running time of 55 min with nutshell as the feedstock while the minimum liquid yield is found to be 30 wt% of feedstock at an optimum temperature of 400 °C for a feed size of 2.36 mm with a running time of 65 min for linseed residue. A detailed study on the variation of product yields with reaction parameters is presented for the latest investigation with pine seed as the feedstock where a maximum liquid yield of 40 wt% of dry feedstock is obtained at an optimum temperature of 500 °C for a feed size of 2.36-2.76 mm with a running time of 120 min. The characterization of the pyrolysis oil is carried out and a comparison of some selected properties of the oil is presented. From the study it is exhibited that the biomass solid wastes have the potential to be converted into liquid oil as a source of renewable energy with some further upgrading of the products.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Based on regional-scale studies, aboveground production and litter decomposition are thought to positively covary, because they are driven by shared biotic and climatic factors. Until now we have been unable to test whether production and decomposition are generally coupled across climatically dissimilar regions, because we lacked replicated data collected within a single vegetation type across multiple regions, obfuscating the drivers and generality of the association between production and decomposition. Furthermore, our understanding of the relationships between production and decomposition rests heavily on separate meta-analyses of each response, because no studies have simultaneously measured production and the accumulation or decomposition of litter using consistent methods at globally relevant scales. Here, we use a multi-country grassland dataset collected using a standardized protocol to show that live plant biomass (an estimate of aboveground net primary production) and litter disappearance (represented by mass loss of aboveground litter) do not strongly covary. Live biomass and litter disappearance varied at different spatial scales. There was substantial variation in live biomass among continents, sites and plots whereas among continent differences accounted for most of the variation in litter disappearance rates. Although there were strong associations among aboveground biomass, litter disappearance and climatic factors in some regions (e.g. U.S. Great Plains), these relationships were inconsistent within and among the regions represented by this study. These results highlight the importance of replication among regions and continents when characterizing the correlations between ecosystem processes and interpreting their global-scale implications for carbon flux. We must exercise caution in parameterizing litter decomposition and aboveground production in future regional and global carbon models as their relationship is complex.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of oxygen availability and induction culture biomass upon production of an industrially important monoamine oxidase (MAO) were investigated in fed-batch cultures of a recombinant E. coli. For each induction cell biomass 2 different oxygenation methods were used, aeration and oxygen enriched air. Induction at higher biomass levels increased the culture demand for oxygen, leading to fermentative metabolism and accumulation of high levels of acetate in the aerated cultures. Paradoxically, despite an almost eight fold increase in acetate accumulation to levels widely reported to be highly detrimental to protein production, when induction wet cell weight (WCW) rose from 100% to 137.5%, MAO specific activity in these aerated processes showed a 3 fold increase. By contrast, for oxygenated cultures induced at WCW's 100% and 137.5% specific activity levels were broadly similar, but fell rapidly after the maxima were reached. Induction at high biomass levels (WCW 175%) led to very low levels of specific MAO activity relative to induction at lower WCW's in both aerated and oxygenated cultures. Oxygen enrichment of these cultures was a useful strategy for boosting specific growth rates, but did not have positive effects upon specific enzyme activity. Based upon our findings, consideration of the amino acid composition of MAO and previous studies on related enzymes, we propose that this effect is due to oxidative damage to the MAO enzyme itself during these highly aerobic processes. Thus, the optimal process for MAO production is aerated, not oxygenated, and induced at moderate cell density, and clearly represents a compromise between oxygen supply effects on specific growth rate/induction cell density, acetate accumulation, and high specific MAO activity. This work shows that the negative effects of oxygen previously reported in free enzyme preparations, are not limited to these acellular environments but are also discernible in the sheltered environment of the cytosol of E. coli cells.