3 resultados para ICE-SHEET
em Queensland University of Technology - ePrints Archive
Resumo:
Neoproterozoic glacigenic formations are preserved in the Kimberley region and northwestern Northern Territory of northern Australia. They are distributed in the west Kimberley adjacent to the northern margins of the King Leopold Orogen, the Mt Ramsay area at the junction of the King Leopold and Halls Creek Orogens, and the east Kimberley, adjacent to the eastern margin of the Halls Creek Orogen. Small outlier glacigenic deposits are preserved in the Litchfield Province, Northern Territory (Uniya Formation) and Georgina Basin, western Queensland (Little Burke Formation). Glacigenic strata comprise diamictite, conglomerate, sandstone and pebbly mudstone and characterize the Walsh, Landrigan and Fargoo/Moonlight Valley formations. Thin units of laminated dolomite sit conformably at the top of the Walsh, Landrigan and Moonlight Valley formations. Glacigenic units are also interbedded with the carbonate platform deposits of the Egan Formation and Boonall Dolomite. δ13C data are available for all carbonate units. There is no direct chronological constraint on these successions. Dispute over regional correlation of the Neoproterozoic succession has been largely resolved through biostratigraphic, chemostratigraphic and lithostratigraphic analysis. However, palaeomagnetic results from the Walsh Formation are inconsistent with sedimentologically based correlations. Two stratigraphically defined glaciations are preserved in northwestern Australia: the ‘Landrigan Glaciation’, characterized by southwest-directed continental ice-sheet movement and correlated with late Cryogenian glaciation elsewhere in Australia and the world; and, the ‘Egan Glaciation’, a more localized glaciation of the Ediacaran Period. Future research focus should include chronology, palaeomagnetic constraint and tectonostratigraphic controls on deposition.
Resumo:
We identified, mapped, and characterized a widespread area (gt;1,020 km2) of patterned ground in the Saginaw Lowlands of Michigan, a wet, flat plain composed of waterlain tills, lacustrine deposits, or both. The polygonal patterned ground is interpreted as a possible relict permafrost feature, formed in the Late Wisconsin when this area was proximal to the Laurentide ice sheet. Cold-air drainage off the ice sheet might have pooled in the Saginaw Lowlands, which sloped toward the ice margin, possibly creating widespread but short-lived permafrost on this glacial lake plain. The majority of the polygons occur between the Glacial Lake Warren strandline (~14.8 cal. ka) and the shoreline of Glacial Lake Elkton (~14.3 cal. ka), providing a relative age bracket for the patterned ground. Most of the polygons formed in dense, wet, silt loam soils on flat-lying sites and take the form of reticulate nets with polygon long axes of 150 to 160 m and short axes of 60 to 90 m. Interpolygon swales, often shown as dark curvilinears on aerial photographs, are typically slightly lower than are the polygon centers they bound. Some portions of these interpolygon swales are infilled with gravel-free, sandy loam sediments. The subtle morphology and sedimentological characteristics of the patterned ground in the Saginaw Lowlands suggest that thermokarst erosion, rather than ice-wedge replacement, was the dominant geomorphic process associated with the degradation of the Late-Wisconsin permafrost in the study area and, therefore, was primarily responsible for the soil patterns seen there today.