938 resultados para Hyperspectral systems
em Queensland University of Technology - ePrints Archive
Resumo:
In this paper, we present the application of a non-linear dimensionality reduction technique for the learning and probabilistic classification of hyperspectral image. Hyperspectral image spectroscopy is an emerging technique for geological investigations from airborne or orbital sensors. It gives much greater information content per pixel on the image than a normal colour image. This should greatly help with the autonomous identification of natural and manmade objects in unfamiliar terrains for robotic vehicles. However, the large information content of such data makes interpretation of hyperspectral images time-consuming and userintensive. We propose the use of Isomap, a non-linear manifold learning technique combined with Expectation Maximisation in graphical probabilistic models for learning and classification. Isomap is used to find the underlying manifold of the training data. This low dimensional representation of the hyperspectral data facilitates the learning of a Gaussian Mixture Model representation, whose joint probability distributions can be calculated offline. The learnt model is then applied to the hyperspectral image at runtime and data classification can be performed.
Applying incremental EM to Bayesian classifiers in the learning of hyperspectral remote sensing data
Resumo:
In this paper, we apply the incremental EM method to Bayesian Network Classifiers to learn and interpret hyperspectral sensor data in robotic planetary missions. Hyperspectral image spectroscopy is an emerging technique for geological investigations from airborne or orbital sensors. Many spacecraft carry spectroscopic equipment as wavelengths outside the visible light in the electromagnetic spectrum give much greater information about an object. The algorithm used is an extension to the standard Expectation Maximisation (EM). The incremental method allows us to learn and interpret the data as they become available. Two Bayesian network classifiers were tested: the Naive Bayes, and the Tree-Augmented-Naive Bayes structures. Our preliminary experiments show that incremental learning with unlabelled data can improve the accuracy of the classifier.
Resumo:
A planar polynomial differential system has a finite number of limit cycles. However, finding the upper bound of the number of limit cycles is an open problem for the general nonlinear dynamical systems. In this paper, we investigated a class of Liénard systems of the form x'=y, y'=f(x)+y g(x) with deg f=5 and deg g=4. We proved that the related elliptic integrals of the Liénard systems have at most three zeros including multiple zeros, which implies that the number of limit cycles bifurcated from the periodic orbits of the unperturbed system is less than or equal to 3.
Revolutionary Leadership, Education Systems and New Times: More of the Same or Time For Real Change?
Resumo:
In some Queensland universities, Information Systems academics have moved out of Business Faculties. This study uses a pilot SWOT analysis to examine the ramifications of Information Systems academics being located within or outside of the Business Faculty. The analysis provides a useful basis for decision makers in the School studied, to exploit opportunities and minimise external threats. For Information Systems academics contemplating administrative relocation of their group, the study also offers useful insights. The study presages a series of further SWOT analyses to provide a range of perspectives on the relative merits of having Information Systems academics administratively located inside versus outside Business faculties.