282 resultados para Hospital-acquired Infection
em Queensland University of Technology - ePrints Archive
Resumo:
Hospital acquired infections (HAI) are costly but many are avoidable. Evaluating prevention programmes requires data on their costs and benefits. Estimating the actual costs of HAI (a measure of the cost savings due to prevention) is difficult as HAI changes cost by extending patient length of stay, yet, length of stay is a major risk factor for HAI. This endogeneity bias can confound attempts to measure accurately the cost of HAI. We propose a two-stage instrumental variables estimation strategy that explicitly controls for the endogeneity between risk of HAI and length of stay. We find that a 10% reduction in ex ante risk of HAI results in an expected savings of £693 ($US 984).
Resumo:
There is an ongoing debate about the reasons for and factors contributing to healthcare-associated infection (HAI). Different solutions have been proposed over time to control the spread of HAI, with more focus on hand hygiene than on other aspects such as preventing the aerial dissemination of bacteria. Yet, it emerges that there is a need for a more pluralistic approach to infection control; one that reflects the complexity of the systems associated with HAI and involves multidisciplinary teams including hospital doctors, infection control nurses, microbiologists, architects, and engineers with expertise in building design and facilities management. This study reviews the knowledge base on the role that environmental contamination plays in the transmission of HAI, with the aim of raising awareness regarding infection control issues that are frequently overlooked. From the discussion presented in the study, it is clear that many unknowns persist regarding aerial dissemination of bacteria, and its control via cleaning and disinfection of the clinical environment. There is a paucity of good-quality epidemiological data, making it difficult for healthcare authorities to develop evidence-based policies. Consequently, there is a strong need for carefully designed studies to determine the impact of environmental contamination on the spread of HAI.
Resumo:
The evolution of organisms that cause healthcare acquired infections (HAI) puts extra stress on hospitals already struggling with rising costs and demands for greater productivity and cost containment. Infection control can save scarce resources, lives, and possibly a facility’s reputation, but statistics and epidemiology are not always sufficient to make the case for the added expense. Economics and Preventing Healthcare Acquired Infection presents a rigorous analytic framework for dealing with this increasingly serious problem. ----- Engagingly written for the economics non-specialist, and brimming with tables, charts, and case examples, the book lays out the concepts of economic analysis in clear, real-world terms so that infection control professionals or infection preventionists will gain competence in developing analyses of their own, and be confident in the arguments they present to decision-makers. The authors: ----- Ground the reader in the basic principles and language of economics. ----- Explain the role of health economists in general and in terms of infection prevention and control. ----- Introduce the concept of economic appraisal, showing how to frame the problem, evaluate and use data, and account for uncertainty. ----- Review methods of estimating and interpreting the costs and health benefits of HAI control programs and prevention methods. ----- Walk the reader through a published economic appraisal of an infection reduction program. ----- Identify current and emerging applications of economics in infection control. ---- Economics and Preventing Healthcare Acquired Infection is a unique resource for practitioners and researchers in infection prevention, control and healthcare economics. It offers valuable alternate perspective for professionals in health services research, healthcare epidemiology, healthcare management, and hospital administration. ----- Written for: Professionals and researchers in infection control, health services research, hospital epidemiology, healthcare economics, healthcare management, hospital administration; Association of Professionals in Infection Control (APIC), Society for Healthcare Epidemiologists of America (SHEA)
Resumo:
In this issue Burns et al. report an estimate of the economic loss to Auckland City Hospital from cases of healthcare-associated bloodstream infection. They show that patients with infection stay longer in hospital and this must impose an opportunity cost because beds are blocked. Harder to measure costs fall on patients, their families and non-acute health services. Patients face some risk of dying from the infection.
Resumo:
Objectives Hospital-acquired bloodstream infections are known to increase the risk of death and prolong hospital stay, but precise estimates of these two important outcomes from well-designed studies are rare, particularly for non-intensive care unit (ICU) patients. We aimed to calculate accurate estimates, which are vital for estimating the economic costs of hospital-acquired bloodstream infections.
Resumo:
Healthcare-associated methicillin-resistant Staphylococcus aureus(MRSA) infection may cause increased hospital stay or, sometimes, death. Quantifying this effect is complicated because it is a time-dependent exposure: infection may prolong hospital stay, while longer stays increase the risk of infection. We overcome these problems by using a multinomial longitudinal model for estimating the daily probability of death and discharge. We then extend the basic model to estimate how the effect of MRSA infection varies over time, and to quantify the number of excess ICU days due to infection. We find that infection decreases the relative risk of discharge (relative risk ratio = 0.68, 95% credible interval: 0.54, 0.82), but is only indirectly associated with increased mortality. An infection on the first day of admission resulted in a mean extra stay of 0.3 days (95% CI: 0.1, 0.5) for a patient with an APACHE II score of 10, and 1.2 days (95% CI: 0.5, 2.0) for a patient with an APACHE II score of 30. The decrease in the relative risk of discharge remained fairly constant with day of MRSA infection, but was slightly stronger closer to the start of infection. These results confirm the importance of MRSA infection in increasing ICU stay, but suggest that previous work may have systematically overestimated the effect size.
Resumo:
The launch of the Centre of Research Excellence in Reducing Healthcare Associated Infection (CRE-RHAI) took place in Sydney on Friday 12 October 2012. The mission of the CRE-RHAI is to generate new knowledge about strategies to reduce healthcare associated infections and to provide data on the cost-effectiveness of infection control programs. As well as launching the CRE-RHAI, an important part of this event was a stakeholder Consultation Workshop, which brought together several experts in the Australian infection control community. The aims of this workshop were to establish the research and clinical priorities in Australian infection control, assess the importance of various multi-resistant organisms, and to gather information about decision making in infection control. We present here a summary and discussion of the responses we received.
Resumo:
Introduction Risk factor analyses for nosocomial infections (NIs) are complex. First, due to competing events for NI, the association between risk factors of NI as measured using hazard rates may not coincide with the association using cumulative probability (risk). Second, patients from the same intensive care unit (ICU) who share the same environmental exposure are likely to be more similar with regard to risk factors predisposing to a NI than patients from different ICUs. We aimed to develop an analytical approach to account for both features and to use it to evaluate associations between patient- and ICU-level characteristics with both rates of NI and competing risks and with the cumulative probability of infection. Methods We considered a multicenter database of 159 intensive care units containing 109,216 admissions (813,739 admission-days) from the Spanish HELICS-ENVIN ICU network. We analyzed the data using two models: an etiologic model (rate based) and a predictive model (risk based). In both models, random effects (shared frailties) were introduced to assess heterogeneity. Death and discharge without NI are treated as competing events for NI. Results There was a large heterogeneity across ICUs in NI hazard rates, which remained after accounting for multilevel risk factors, meaning that there are remaining unobserved ICU-specific factors that influence NI occurrence. Heterogeneity across ICUs in terms of cumulative probability of NI was even more pronounced. Several risk factors had markedly different associations in the rate-based and risk-based models. For some, the associations differed in magnitude. For example, high Acute Physiology and Chronic Health Evaluation II (APACHE II) scores were associated with modest increases in the rate of nosocomial bacteremia, but large increases in the risk. Others differed in sign, for example respiratory vs cardiovascular diagnostic categories were associated with a reduced rate of nosocomial bacteremia, but an increased risk. Conclusions A combination of competing risks and multilevel models is required to understand direct and indirect risk factors for NI and distinguish patient-level from ICU-level factors.
Resumo:
Background Clostridium difficile infection (CDI) possibly extends hospital length of stay (LOS); however, the current evidence does not account for the time-dependent bias, ie, when infection is incorrectly analyzed as a baseline covariate. The aim of this study was to determine whether CDI increases LOS after managing this bias. Methods We examined the estimated extra LOS because of CDI using a multistate model. Data from all persons hospitalized >48 hours over 4 years in a tertiary hospital in Australia were analyzed. Persons with health care-associated CDIs were identified. Cox proportional hazards models were applied together with multistate modeling. Results One hundred fifty-eight of 58,942 admissions examined had CDI. The mean extra LOS because of infection was 0.9 days (95% confidence interval: −1.8 to 3.6 days, P = .51) when a multistate model was applied. The hazard of discharge was lower in persons who had CDI (adjusted hazard ratio, 0.42; P < .001) when a Cox proportional hazard model was applied. Conclusion This study is the first to use multistate models to determine the extra LOS because of CDI. Results suggest CDI does not significantly contribute to hospital LOS, contradicting findings published elsewhere. Conversely, when methods prone to result in time-dependent bias were applied to the data, the hazard of discharge significantly increased. These findings contribute to discussion on methods used to evaluate LOS and health care-associated infections.
Resumo:
This paper describes the limitations of using the International Statistical Classification of Diseases and Related Health Problems, Tenth Revision, Australian Modification (ICD-10-AM) to characterise patient harm in hospitals. Limitations were identified during a project to use diagnoses flagged by Victorian coders as hospital-acquired to devise a classification of 144 categories of hospital acquired diagnoses (the Classification of Hospital Acquired Diagnoses or CHADx). CHADx is a comprehensive data monitoring system designed to allow hospitals to monitor their complication rates month-to-month using a standard method. Difficulties in identifying a single event from linear sequences of codes due to the absence of code linkage were the major obstacles to developing the classification. Obstetric and perinatal episodes also presented challenges in distinguishing condition onset, that is, whether conditions were present on admission or arose after formal admission to hospital. Used in the appropriate way, the CHADx allows hospitals to identify areas for future patient safety and quality initiatives. The value of timing information and code linkage should be recognised in the planning stages of any future electronic systems.
Resumo:
Objective: To estimate the relative inpatient costs of hospital-acquired conditions. Methods: Patient level costs were estimated using computerized costing systems that log individual utilization of inpatient services and apply sophisticated cost estimates from the hospital's general ledger. Occurrence of hospital-acquired conditions was identified using an Australian ‘condition-onset' flag for diagnoses not present on admission. These were grouped to yield a comprehensive set of 144 categories of hospital-acquired conditions to summarize data coded with ICD-10. Standard linear regression techniques were used to identify the independent contribution of hospital-acquired conditions to costs, taking into account the case-mix of a sample of acute inpatients (n = 1,699,997) treated in Australian public hospitals in Victoria (2005/06) and Queensland (2006/07). Results: The most costly types of complications were post-procedure endocrine/metabolic disorders, adding AU$21,827 to the cost of an episode, followed by MRSA (AU$19,881) and enterocolitis due to Clostridium difficile (AU$19,743). Aggregate costs to the system, however, were highest for septicaemia (AU$41.4 million), complications of cardiac and vascular implants other than septicaemia (AU$28.7 million), acute lower respiratory infections, including influenza and pneumonia (AU$27.8 million) and UTI (AU$24.7 million). Hospital-acquired complications are estimated to add 17.3% to treatment costs in this sample. Conclusions: Patient safety efforts frequently focus on dramatic but rare complications with very serious patient harm. Previous studies of the costs of adverse events have provided information on ‘indicators’ of safety problems rather than the full range of hospital-acquired conditions. Adding a cost dimension to priority-setting could result in changes to the focus of patient safety programmes and research. Financial information should be combined with information on patient outcomes to allow for cost-utility evaluation of future interventions.
Resumo:
In Viet Nam, standards of nursing care fail to meet international competency standards. This increases risks to patient safety (eg. hospital acquired infection), consequently the Ministry of Health identified the need to strengthen nurse education in Viet Nam. This paper presents experiences of a piloted clinical teaching model developed in Ha Noi, to strengthen nurse led institutional capacity for in-service education and clinical teaching. Historically 90% of nursing education was conducted by physicians and professional development in hospitals for nurses was limited. There was minimal communication between hospitals and nursing schools about expectations of students and assessment and quality of the learning experience. As a result when students came to the clinical sites, no-one understood how to plan their learning objectives and utilise teaching and learning approaches appropriate to their level. Therefore student learning outcomes were variable. They focussed on procedures and techniques and “learning how to do” rather than learning how to plan, implement and evaluate patient care. This project is part of a multi-component capacity building program designed to improve nurse education in Viet Nam. The project was funded jointly by Queensland University of Technology (QUT) and the Australian Agency for International Development. Its aim was to develop a collaborative clinically-based model of teaching to create an environment that encourages evidence-based, student-centred clinical learning. Accordingly, strategies introduced promoted clinical teaching of competency based nursing practice utilising the regionally endorsed nurse core competency standards. Thirty nurse teachers from Viet Duc University Hospital and Hanoi Medical College participated in the program. These nurses and nurse teachers undertook face to face education in three workshops, and completed three assessment items. Assessment was applied, where participants integrated the concepts learned in each workshop and completed assessment tasks related to planning, implementing and evaluating teaching in the clinical area. Twenty of these participants were then selected to undertake a two week study tour in Brisbane, Australia where the clinical teaching model was refined and an action plan developed to integrate into both organisations with possible implementation across Viet Nam. Participants on this study tour also experienced clinical teaching and learning at QUT by attending classes held at the university, and were able to visit selected hospitals to experience clinical teaching in these settings as well. Effectiveness of the project was measured throughout the implementation phase and in follow up visits to the clinical site. To date changes have been noted on an individual and organisational level. There is also significant planning underway to incorporate the clinical teaching model developed across the organisation and how this may be implemented in other regions. Two participants have also been involved in disseminating aspects of this approach to clinical teaching in Ho Chi Minh, with further plans for more in-depth dissemination to occur throughout the country.