220 resultados para Hospital Israelita Albert Einstein
em Queensland University of Technology - ePrints Archive
Resumo:
Diffusion is the process that leads to the mixing of substances as a result of spontaneous and random thermal motion of individual atoms and molecules. It was first detected by the English botanist Robert Brown in 1827, and the phenomenon became known as ‘Brownian motion’. More specifically, the motion observed by Brown was translational diffusion – thermal motion resulting in random variations of the position of a molecule. This type of motion was given a correct theoretical interpretation in 1905 by Albert Einstein, who derived the relationship between temperature, the viscosity of the medium, the size of the diffusing molecule, and its diffusion coefficient. It is translational diffusion that is indirectly observed in MR diffusion-tensor imaging (DTI). The relationship obtained by Einstein provides the physical basis for using translational diffusion to probe the microscopic environment surrounding the molecule.
Resumo:
Hospital acquired infections (HAI) are costly but many are avoidable. Evaluating prevention programmes requires data on their costs and benefits. Estimating the actual costs of HAI (a measure of the cost savings due to prevention) is difficult as HAI changes cost by extending patient length of stay, yet, length of stay is a major risk factor for HAI. This endogeneity bias can confound attempts to measure accurately the cost of HAI. We propose a two-stage instrumental variables estimation strategy that explicitly controls for the endogeneity between risk of HAI and length of stay. We find that a 10% reduction in ex ante risk of HAI results in an expected savings of £693 ($US 984).
The STRATIFY tool and clinical judgment were poor predictors of falling in an acute hospital setting
Resumo:
Objective: To compare the effectiveness of the STRATIFY falls tool with nurses’ clinical judgments in predicting patient falls. Study Design and Setting: A prospective cohort study was conducted among the inpatients of an acute tertiary hospital. Participants were patients over 65 years of age admitted to any hospital unit. Sensitivity, specificity, and positive predictive value (PPV) and negative predictive values (NPV) of the instrument and nurses’ clinical judgments in predicting falls were calculated. Results: Seven hundred and eighty-eight patients were screened and followed up during the study period. The fall prevalence was 9.2%. Of the 335 patients classified as being ‘‘at risk’’ for falling using the STRATIFY tool, 59 (17.6%) did sustain a fall (sensitivity50.82, specificity50.61, PPV50.18, NPV50.97). Nurses judged that 501 patients were at risk of falling and, of these, 60 (12.0%) fell (sensitivity50.84, specificity50.38, PPV50.12, NPV50.96). The STRATIFY tool correctly identified significantly more patients as either fallers or nonfallers than the nurses (P50.027). Conclusion: Considering the poor specificity and high rates of false-positive results for both the STRATIFY tool and nurses’ clinical judgments, we conclude that neither of these approaches are useful for screening of falls in acute hospital settings.
Resumo:
Objective-To establish the demographic, health status and insurance determinants of pre-hospital ambulance non-usage for patients with emergency medical needs. Methods-Triage category, date of birth, sex, marital status, country of origin, method and time of arrival, ambulance insurance status, diagnosis, and disposal were collected for all patients who presented over a four month period (n=10 229) to the emergency department of a major provincial hospital. Data for patients with urgent (n=678) or critical care needs (n=332) who did not use pre-hospital care were analysed using Poisson regression. Results-Only a small percentage (6.6%) of the total sample were triaged as having urgent medical needs or critical care needs (3.2%). Predictors of usage for those with urgent care needs included age greater than 65 years (prevalence ratio (PR)=0.54; 95% confidence interval (CI)= 0.35 to 0.83), being admitted to intensive care or transferred to another hospital (PR=0.62; 95% CI=0.44 to 0.89) or ward (PR=0.72; 95% CI=0.56 to 0.93) and ambulance insurance status (PR=0.67; 95% CI=052 to 0.86). Sex, marital status, time of day and country of origin were not predictive of usage and non-usage. Predictors of usage for those with critical care needs included age 65 years or greater (PR=0.45; 95% CI=0.25 to 0.81) and a diagnosis of trauma (PR=0.49; 95% CI=0.26 to 0.92). A non-English speaking background was predictive of non-usage (PR=1.98; 95% CI=1.06 to 3.70). Sex, marital status, time of day, triage and ambulance insurance status were not predictive of non-usage. Conclusions-Socioeconomic and medical factors variously influence ambulance usage depending on the severity or urgency of the medical condition. Ambulance insurance status was less of an influence as severity of condition increased suggesting that, at a critical level of urgency, patients without insurance are willing to pay for a pre-hospital ambulance service.
Resumo:
Aim – To develop and assess the predictive capabilities of a statistical model that relates routinely collected Trauma Injury Severity Score (TRISS) variables to length of hospital stay (LOS) in survivors of traumatic injury. Method – Retrospective cohort study of adults who sustained a serious traumatic injury, and who survived until discharge from Auckland City, Middlemore, Waikato, or North Shore Hospitals between 2002 and 2006. Cubic-root transformed LOS was analysed using two-level mixed-effects regression models. Results – 1498 eligible patients were identified, 1446 (97%) injured from a blunt mechanism and 52 (3%) from a penetrating mechanism. For blunt mechanism trauma, 1096 (76%) were male, average age was 37 years (range: 15-94 years), and LOS and TRISS score information was available for 1362 patients. Spearman’s correlation and the median absolute prediction error between LOS and the original TRISS model was ρ=0.31 and 10.8 days, respectively, and between LOS and the final multivariable two-level mixed-effects regression model was ρ=0.38 and 6.0 days, respectively. Insufficient data were available for the analysis of penetrating mechanism models. Conclusions – Neither the original TRISS model nor the refined model has sufficient ability to accurately or reliably predict LOS. Additional predictor variables for LOS and other indicators for morbidity need to be considered.
Resumo:
This study aimed to identify: i) the prevalence of malnutrition according to the scored Patient Generated-Subjective Global Assessment (PG-SGA); ii) utilization of available nutrition resources; iii) patient nutrition information needs; and iv) external sources of nutrition information. An observational, cross-sectional study was undertaken at an Australian public hospital on 191 patients receiving oncology services. According to PG-SGA, 49% of patients were malnourished and 46% required improved symptom management and/or nutrition intervention. Commonly reported nutrition-impact symptoms included: peculiar tastes (31%), no appetite (24%) and nausea (24%). External sources of nutrition information were accessed by 37%, with popular choices being media/internet (n=19) and family/friends (n=13). In a sub-sample (n=65), 32 patients were aware of the available nutrition resources, 23 thought the information sufficient and 19 patients had actually read them. Additional information on supplements and modifying side effects was requested by 26 patients. Malnutrition is common in oncology patients receiving treatment at an Australian public hospital and almost half require improved symptom management and/or nutrition intervention. Patients who read the available nutrition information found it useful, however awareness of these nutrition resources and the provision of information on supplementation and managing symptoms requires attention.
Resumo:
It is important to detect and treat malnutrition in hospital patients so as to improve clinical outcome and reduce hospital stay. The aim of this study was to develop and validate a nutrition screening tool with a simple and quick scoring system for acute hospital patients in Singapore. In this study, 818 newly admitted patients aged above 18 years old were screened using five parameters that contribute to the risk of malnutrition. A dietitian blinded to the nutrition screening score assessed the same patients using the reference standard, Subjective Global Assessment (SGA) within 48 hours. The sensitivity and specificity were established using the Receiver Operator Characteristics (ROC) curve and the best cutoff scores determined. The nutrition parameter with the largest Area Under the ROC Curve (AUC) was chosen as the final screening tool, which was named 3-Minute Nutrition Screening (3-MinNS). The combination of the parameters weight loss, intake and muscle wastage (3-MinNS), gave the largest AUC when compared with SGA. Using 3-MinNS, the best cutoff point to identify malnourished patients is three (sensitivity 86%, specificity 83%). The cutoff score to identify subjects at risk of severe malnutrition is five (sensitivity 93%, specificity 86%). 3-Minute Nutrition Screening is a valid, simple and rapid tool to identify patients at risk of malnutrition in Singapore acute hospital patients. It is able to differentiate patients at risk of moderate malnutrition and severe malnutrition for prioritization and management purposes.
Resumo:
Background. The objective is to estimate the cost-effectiveness of an intervention that reduces hospital readmission among older people at high risk. A cost-effectiveness model to estimate the costs and health benefits of the intervention was implemented. Methodology/Principal Findings. The model used data from a randomised controlled trial conducted in an Australian tertiary metropolitan hospital. Participants were acute medical admissions aged >65 years with at least one risk factor for readmission: multiple comorbidities, impaired functionality, aged >75 years, 30 recent multiple admissions, poor social support, history of depression. The intervention was a comprehensive nursing and physiotherapy assessment and an individually tailored program of exercise strategies and nurse home visits with telephone follow-up; commencing in hospital and continuing following discharge for 24 weeks. The change to cost outcomes, including the costs of implementing the intervention and all subsequent use of health care services, and, the change to health benefits, represented by quality adjusted life years, were estimated for the intervention as compared to existing practice. The mean change to total costs and quality 38 adjusted life years for an average individual over 24 weeks participating in the intervention were: cost savings of $333 (95% Bayesian credible interval $-1,932:1,282) and 0.118 extra quality adjusted life years (95% Bayesian credible interval 0.1:0.136). The mean net41 monetary-benefit per individual for the intervention group compared to the usual care condition was $7,907 (95% Bayesian credible interval $5,959:$9,995) for the 24 week period. Conclusions/Significance. The estimation model that describes this intervention predicts cost savings and improved health outcomes. A decision to remain with existing practices causes unnecessary costs and reduced health. Decision makers should consider adopting this 46 program for elderly hospitalised patients.
Temperature variation and emergency hospital admissions for stroke in Brisbane, Australia, 1996-2005
Resumo:
Stroke is a leading cause of disability and death. This study evaluated the association between temperature variation and emergency admissions for stroke in Brisbane, Australia. Daily emergency admissions for stroke, meteorologic and air pollution data were obtained for the period of January 1996 to December 2005. The relative risk of emergency admissions for stroke was estimated with a generalized estimating equations (GEE) model. For primary intracerebral hemorrhage (PIH) emergency admissions, the average daily PIH for the group aged < 65 increased by 15% (95% Confidence Interval (CI): 5, 26%) and 12% (95% CI: 2, 22%) for a 1°C increase in daily maximum temperature and minimum temperature in summer, respectively, after controlling for potential confounding effects of humidity and air pollutants. For ischemic stroke (IS) emergency admissions, the average daily IS for the group aged ≥ 65 decreased by 3% (95% CI: -6, 0%) for a 1°C increase in daily maximum temperature in winter after adjustment for confounding factors. Temperature variation was significantly associated with emergency admissions for stroke, and its impact varied with different type of stroke. Health authorities should pay greater attention to possible increasing emergency care for strokes when temperature changes, in both summer and winter.