194 resultados para Horizontal tunnels
em Queensland University of Technology - ePrints Archive
Resumo:
The two-dimensional free surface flow of a finite-depth fluid into a horizontal slot is considered. For this study, the effects of viscosity and gravity are ignored. A generalised Schwarz-Christoffel mapping is used to formulate the problem in terms of a linear integral equation, which is solved exactly with the use of a Fourier transform. The resulting free surface profile is given explicitly in closed-form.
Resumo:
The works depicted two ostensibly plaster figures 'cocooned' in protective overalls. The pose of both figures had a sense of instability, balancing improbably due to internal weights. This teetering, arching quality, combined with the empty sleeves of the overalls, made reference to the Rodin's Balzac and its aura of heroic subjectivity. As the Tyvek suits depicted in the works are a common part of my studio paraphernalia, these works sought to draw a line between these two opposing aspects of the subjectivity of the artist - the transcendent and the quotidian. The works were shown as part of ‘The Day the Machine Started’ for Dianne Tanzer Gallery + Projects at the 2010 Melbourne Art Fair. The works received citations in The Age and The Australian newspapers.
Resumo:
The effect of radiation on natural convection flow from an isothermal circular cylinder has been investigated numerically in this study. The governing boundary layer equations of motion are transformed into a non-dimensional form and the resulting nonlinear systems of partial differential equations are reduced to convenient boundary layer equations, which are then solved numerically by two distinct efficient methods namely: (i) implicit finite differencemethod or the Keller-Box Method (KBM) and (ii) Straight Forward Finite Difference Method (SFFD). Numerical results are presented by velocity and temperature distribution of the fluid as well as heat transfer characteristics, namely the shearing stress and the local heat transfer rate in terms of the local skin-friction coefficient and the local Nusselt number for a wide range of surface heating parameter and radiation-conduction parameter. Due to the effects of the radiation the skin-friction coefficients as well as the rate of heat transfer increased and consequently the momentum and thermal boundary layer thickness enhanced.
Resumo:
Mixed convection of a two-dimensional laminar incompressible flow along a horizontal flat plate with streamwise sinusoidal surface temperature has been numerically investigated for different values of Rayleigh number and Reynolds number for constant values of Prandtl number, amplitude and frequency of periodic temperature. The numerical scheme is based on the finite element method adapted to rectangular non-uniform mesh elements by a non-linear parametric solution algorithm. The fluid considered in this study is air. The results are obtained for the Rayleigh number and Reynolds number ranging from 102 to 104 and 1 to 100, respectively, with constant physical properties for the fluid medium considered. Velocity and temperature profiles, streamlines, isotherms, and average Nusselt numbers are presented to observe the effect of the investigating parameters on fluid flow and heat transfer characteristics. The present results show that the convective phenomena are greatly influenced by the variation of Rayleigh numbers and Reynolds number.
Resumo:
Magnetohydrodynamic (MHD) natural convection laminar flow from an iso-thermal horizontal circular cylinder immersed in a fluid with viscosity proportional to a linear function of temperature will be discussed with numerical simulations. The governing boundary layer equations are transformed into a non-dimensional form and the resulting nonlinear system of partial differential equa-tions are reduced to convenient form, which are solved numerically by two very efficient methods, namely, (i) Implicit finite difference method together with Keller box scheme and (ii) Direct numerical scheme. Numerical results are presented by velocity and temperature distributions of the fluid as well as heat transfer characteristics, namely the shearing stress and the local heat transfer rate in terms of the local skin-friction coefficient and the local Nusselt number for a wide range of magnetohydrodynamic parameter, viscosity-variation parameter and viscous dissipation parameter. MHD flow in this geometry with temperature dependent viscosity is absent in the literature. The results obtained from the numerical simulations have been veri-fied by two methodologies.
Resumo:
The future vehicle navigation for safety applications requires seamless positioning at the accuracy of sub-meter or better. However, standalone Global Positioning System (GPS) or Differential GPS (DGPS) suffer from solution outages while being used in restricted areas such as high-rise urban areas and tunnels due to the blockages of satellite signals. Smoothed DGPS can provide sub-meter positioning accuracy, but not the seamless requirement. A disadvantage of the traditional navigation aids such as Dead Reckoning and Inertial Measurement Unit onboard vehicles are either not accurate enough due to error accumulation or too expensive to be acceptable by the mass market vehicle users. One of the alternative technologies is to use the wireless infrastructure installed in roadside to locate vehicles in regions where the Global Navigation Satellite Systems (GNSS) signals are not available (for example: inside tunnels, urban canyons and large indoor car parks). The examples of roadside infrastructure which can be potentially used for positioning purposes could include Wireless Local Area Network (WLAN)/Wireless Personal Area Network (WPAN) based positioning systems, Ultra-wide band (UWB) based positioning systems, Dedicated Short Range Communication (DSRC) devices, Locata’s positioning technology, and accurate road surface height information over selected road segments such as tunnels. This research reviews and compares the possible wireless technologies that could possibly be installed along roadside for positioning purposes. Models and algorithms of integrating different positioning technologies are also presented. Various simulation schemes are designed to examine the performance benefits of united GNSS and roadside infrastructure for vehicle positioning. The results from these experimental studies have shown a number of useful findings. It is clear that in the open road environment where sufficient satellite signals can be obtained, the roadside wireless measurements contribute very little to the improvement of positioning accuracy at the sub-meter level, especially in the dual constellation cases. In the restricted outdoor environments where only a few GPS satellites, such as those with 45 elevations, can be received, the roadside distance measurements can help improve both positioning accuracy and availability to the sub-meter level. When the vehicle is travelling in tunnels with known heights of tunnel surfaces and roadside distance measurements, the sub-meter horizontal positioning accuracy is also achievable. Overall, simulation results have demonstrated that roadside infrastructure indeed has the potential to provide sub-meter vehicle position solutions for certain road safety applications if the properly deployed roadside measurements are obtainable.
Resumo:
Numerical investigation on mixed convection of a two-dimensional incompressible laminar flow over a horizontal flat plate with streamwise sinusoidal distribution of surface temperature has been performed for different values of Rayleigh number, Reynolds number and frequency of periodic temperature for constant Prandtl number and amplitude of periodic temperature. Finite element method adapted to rectangular non-uniform mesh elements by a non-linear parametric solution algorithm basis numerical scheme has been employed. The investigating parameters are the Rayleigh number, the Reynolds number and frequency of periodic temperature. The effect of variation of individual investigating parameters on mixed convection flow characteristics has been studied to observe the hydrodynamic and thermal behavior for while keeping the other parameters constant. The fluid considered in this study is air with Prandtl number 0.72. The results are obtained for the Rayleigh number range of 102 to 104, Reynolds number ranging from 1 to 100 and the frequency of periodic temperature from 1 to 5. Isotherms, streamlines, average and local Nusselt numbers are presented to show the effect of the different values of aforementioned investigating parameters on fluid flow and heat transfer.
Resumo:
Polysulphone (PS) dosimetry has been a widely used technique for more than 30 years to quantify the erythemally effective UV dose received by anatomic sites (personal exposure). The calibration of PS dosimeters is an important issue as their spectral response is different from the erythemal action spectrum. It is performed exposing a set of PS dosimeters on a horizontal plane and measuring the UV doses received by dosimeters using calibrated spectroradiometers or radiometers. In this study, data collected during PS field campaigns (from 2004 to 2006), using horizontal and differently inclined dosimeters, were analyzed to provide some considerations on the transfer of the horizontal calibration to differently inclined dosimeters, as anatomic sites usually are. The role of sky conditions, of the angle of incidence between the sun and the normal to the slope, and of the type of surrounding surface on the calibration were investigated. It was concluded that PS horizontal calibrations apply to differently inclined dosimeters for incidence angles up to approximately 70 degrees and for surfaces excluding ones with high albedo. Caution should be used in the application of horizontal calibrations for cases of high-incidence angle and/or high albedo surfaces.
Resumo:
Laminar two-dimensional natural convection boundary-layer flow of non-Newtonian fluids along an isothermal horizontal circular cylinder has been studied using a modified power-law viscosity model. In this model, there are no unrealistic limits of zero or infinite viscosity. Therefore, the boundary-layer equations can be solved numerically by using marching order implicit finite difference method with double sweep technique. Numerical results are presented for the case of shear-thinning as well as shear thickening fluids in terms of the fluid velocity and temperature distributions, shear stresses and rate of heat transfer in terms of the local skin-friction and local Nusselt number respectively.
Resumo:
Pesticides used in agricultural systems must be applied in economically viable and environmentally sensitive ways, and this often requires expensive field trials on spray deposition and retention by plant foliage. Computational models to describe whether a spray droplet sticks (adheres), bounces or shatters on impact, and if any rebounding parent or shatter daughter droplets are recaptured, would provide an estimate of spray retention and thereby act as a useful guide prior to any field trials. Parameter-driven interactive software has been implemented to enable the end-user to study and visualise droplet interception and impaction on a single, horizontal leaf. Living chenopodium, wheat and cotton leaves have been scanned to capture the surface topography and realistic virtual leaf surface models have been generated. Individual leaf models have then been subjected to virtual spray droplets and predictions made of droplet interception with the virtual plant leaf. Thereafter, the impaction behaviour of the droplets and the subsequent behaviour of any daughter droplets, up until re-capture, are simulated to give the predicted total spray retention by the leaf. A series of critical thresholds for the stick, bounce, and shatter elements in the impaction process have been developed for different combinations of formulation, droplet size and velocity, and leaf surface characteristics to provide this output. The results show that droplet properties, spray formulations and leaf surface characteristics all influence the predicted amount of spray retained on a horizontal leaf surface. Overall the predicted spray retention increases as formulation surface tension, static contact angle, droplet size and velocity decreases. Predicted retention on cotton is much higher than on chenopodium. The average predicted retention on a single horizontal leaf across all droplet size, velocity and formulations scenarios tested, is 18, 30 and 85% for chenopodium, wheat and cotton, respectively.
Resumo:
Purpose: Changes in pupil size and shape are relevant for peripheral imagery by affecting aberrations and how much light enters and/or exits the eye. The purpose of this study is to model the pattern of pupil shape across the complete horizontal visual field and to show how the pattern is influenced by refractive error. Methods: Right eyes of thirty participants were dilated with 1% cyclopentolate and images were captured using a modified COAS-HD aberrometer alignment camera along the horizontal visual field to ±90°. A two lens relay system enabled fixation at targets mounted on the wall 3m from the eye. Participants placed their heads on a rotatable chin rest and eye rotations were kept to less than 30°. Best-fit elliptical dimensions of pupils were determined. Ratios of minimum to maximum axis diameters were plotted against visual field angle. Results: Participants’ data were well fitted by cosine functions, with maxima at (–)1° to (–)9° in the temporal visual field and widths 9% to 15% greater than predicted by the cosine of the field angle . Mean functions were 0.99cos[( + 5.3)/1.121], R2 0.99 for the whole group and 0.99cos[( + 6.2)/1.126], R2 0.99 for the 13 emmetropes. The function peak became less temporal, and the width became smaller, with increase in myopia. Conclusion: Off-axis pupil shape changes are well described by a cosine function which is both decentered by a few degrees and flatter by about 12% than the cosine of the viewing angle, with minor influences of refraction.
Resumo:
This paper uses finite element techniques to investigate the performance of buried tunnels subjected to surface blasts incorporating fully coupled Fluid Structure Interaction and appropriate material models which simulate strain rate effects. Modelling techniques are first validated against existing experimental results and then used to treat the blast induced shock wave propagation and tunnel response in dry and saturated sands. Results show that the tunnel buried in saturated sand responds earlier than that in dry sand. Tunnel deformations decrease with distance from explosive in both sands, as expected. In the vicinity of the explosive, the tunnel buried in saturated sand suffered permanent deformation in both axial and circumferential directions, whereas the tunnel buried in dry sand recovered from most of the axial deformation. Overall, response of the tunnel in saturated sand is more severe for a given blast event and shows the detrimental effect of pore water on the blast response of buried tunnels. The validated modelling techniques developed in this paper can be used to investigate the blast response of tunnels buried in dry and saturated sands.