91 resultados para Hole effect model
em Queensland University of Technology - ePrints Archive
Resumo:
Poisson distribution has often been used for count like accident data. Negative Binomial (NB) distribution has been adopted in the count data to take care of the over-dispersion problem. However, Poisson and NB distributions are incapable of taking into account some unobserved heterogeneities due to spatial and temporal effects of accident data. To overcome this problem, Random Effect models have been developed. Again another challenge with existing traffic accident prediction models is the distribution of excess zero accident observations in some accident data. Although Zero-Inflated Poisson (ZIP) model is capable of handling the dual-state system in accident data with excess zero observations, it does not accommodate the within-location correlation and between-location correlation heterogeneities which are the basic motivations for the need of the Random Effect models. This paper proposes an effective way of fitting ZIP model with location specific random effects and for model calibration and assessment the Bayesian analysis is recommended.
Resumo:
Magnesium alloys have been of growing interest to various engineering applications, such as the automobile, aerospace, communication and computer industries due to their low density, high specific strength, good machineability and availability as compared with other structural materials. However, most Mg alloys suffer from poor plasticity due to their Hexagonal Close Packed structure. Grain refinement has been proved to be an effective method to enhance the strength and alter the ductility of the materials. Several methods have been proposed to produce materials with nanocrystalline grain structures. So far, most of the research work on nanocrystalline materials has been carried out on Face-Centered Cubic and Body-Centered Cubic metals. However, there has been little investigation of nanocrystalline Mg alloys. In this study, bulk coarse-grained and nanocrystalline Mg alloys were fabricated by a mechanical alloying method. The mixed powder of Mg chips and Al powder was mechanically milled under argon atmosphere for different durations of 0 hours (MA0), 10 hours (MA10), 20 hours (MA20), 30 hours (MA30) and 40 hours (MA40), followed by compaction and sintering. Then the sintered billets were hot-extruded into metallic rods with a 7 mm diameter. The obtained Mg alloys have a nominal composition of Mg–5wt% Al, with grain sizes ranging from 13 μm down to 50 nm, depending on the milling durations. The microstructure characterization and evolution after deformation were carried out by means of Optical microscopy, X-Ray Diffraction, Scanning Electron Microscopy, Transmission Electron Microscopy, Scanning Probe Microscopy and Neutron Diffraction techniques. Nanoindentaion, compression and micro-compression tests on micro-pillars were used to study the size effects on the mechanical behaviour of the Mg alloys. Two kinds of size effects on the mechanical behaviours and deformation mechanisms were investigated: grain size effect and sample size effect. The nanoindentation tests were composed of constant strain rate, constant loading rate and indentation creep tests. The normally reported indentation size effect in single crystal and coarse-grained crystals was observed in both the coarse-grained and nanocrystalline Mg alloys. Since the indentation size effect is correlated to the Geometrically Necessary Dislocations under the indenter to accommodate the plastic deformation, the good agreement between the experimental results and the Indentation Size Effect model indicated that, in the current nanocrystalline MA20 and MA30, the dislocation plasticity was still the dominant deformation mechanism. Significant hardness enhancement with decreasing grain size, down to 58 nm, was found in the nanocrystalline Mg alloys. Further reduction of grain size would lead to a drop in the hardness values. The failure of grain refinement strengthening with the relatively high strain rate sensitivity of nanocrystalline Mg alloys suggested a change in the deformation mechanism. Indentation creep tests showed that the stress exponent was dependent on the loading rate during the loading section of the indentation, which was related to the dislocation structures before the creep starts. The influence of grain size on the mechanical behaviour and strength of extruded coarse-grained and nanocrystalline Mg alloys were investigated using uniaxial compression tests. The macroscopic response of the Mg alloys transited from strain hardening to strain softening behaviour, with grain size reduced from 13 ìm to 50 nm. The strain hardening was related to the twinning induced hardening and dislocation hardening effect, while the strain softening was attributed to the localized deformation in the nanocrystalline grains. The tension–compression yield asymmetry was noticed in the nanocrystalline region, demonstrating the twinning effect in the ultra-fine-grained and nanocrystalline region. The relationship k tensions < k compression failed in the nanocrystalline Mg alloys; this was attributed to the twofold effect of grain size on twinning. The nanocrystalline Mg alloys were found to exhibit increased strain rate sensitivity with decreasing grain size, with strain rate ranging from 0.0001/s to 0.01/s. Strain rate sensitivity of coarse-grained MA0 was increased by more than 10 times in MA40. The Hall-Petch relationship broke down at a critical grain size in the nanocrystalline region. The breakdown of the Hall-Petch relationship and the increased strain rate sensitivity were due to the localized dislocation activities (generalization and annihilation at grain boundaries) and the more significant contribution from grain boundary mediated mechanisms. In the micro-compression tests, the sample size effects on the mechanical behaviours were studied on MA0, MA20 and MA40 micro-pillars. In contrast to the bulk samples under compression, the stress-strain curves of MA0 and MA20 micro-pillars were characterized with a number of discrete strain burst events separated by nearly elastic strain segments. Unlike MA0 and MA20, the stress-strain curves of MA40 micro-pillars were smooth, without obvious strain bursts. The deformation mechanisms of the MA0 and MA20 micro-pillars under micro-compression tests were considered to be initially dominated by deformation twinning, followed by dislocation mechanisms. For MA40 pillars, the deformation mechanisms were believed to be localized dislocation activities and grain boundary related mechanisms. The strain hardening behaviours of the micro-pillars suggested that the grain boundaries in the nanocrystalline micro-pillars would reduce the source (nucleation sources for twins/dislocations) starvation hardening effect. The power law relationship of the yield strength on pillar dimensions in MA0, MA20 supported the fact that the twinning mechanism was correlated to the pre-existing defects, which can promote the nucleation of the twins. Then, we provided a latitudinal comparison of the results and conclusions derived from the different techniques used for testing the coarse-grained and nanocrystalline Mg alloy; this helps to better understand the deformation mechanisms of the Mg alloys as a whole. At the end, we summarized the thesis and highlighted the conclusions, contributions, innovations and outcomes of the research. Finally, it outlined recommendations for future work.
Resumo:
This paper investigates the determinants of China’s regional innovation capacity (RIC) and variations in these determinants between different types of regions. Based on the framework of national innovation capacity (NIC) and research on innovation system, this paper develops a framework of RIC in the Chinese context. Using panel data from 1991 to 2009, clustering analysis is first employed to classify regions according to their innovation development path. Panel data regressions with fixed effect model are conducted to explore the determinants of RIC and how these vary across the different regional clusters. We find that the 30 regions can be clustered into three groups, and there are considerable differences in the drivers of RIC between these different regional groups.
Resumo:
Background Postoperative chemotherapy is currently not recommended for resected non-small cell lung cancer in many countries and centers. Recently, results of several large randomized clinical trials were reported with conflicting evidence. Accordingly, we sought to determine whether postoperative chemotherapy is associated with improved survival compared with that after surgical intervention alone. Methods Randomized clinical trials with cisplatin- or uracil plus ftorafur-containing regimens were included and evaluated separately. A systematic review that included randomized clinical trials performed before 1995 was identified and found to be of adequate quality. Further randomized controlled trials were identified by searching MEDLINE, EMBASE, and the Cochrane Controlled Trials Register from 1995 through 2004. In addition, the reference lists of articles and conference abstracts were searched. The logarithm of the hazard ratio and its standard error were calculated, and a fixed-effect model was used to combine the estimates. Results There were 7200 patients enrolled in 19 trials included in the analyses. An overall estimate of 13% relative reduction in mortality (95% confidence interval, 7%-19%) was found. There was 11% relative reduction in mortality associated with postoperative cisplatin (95% confidence interval, 4%-18%; P = .004) and 17% associated with uracil plus ftorafur (95% confidence interval, 5%-27%; P = .006) compared with that after surgical intervention alone. This means that there would be an additional survivor at 5 years for 25 patients treated with cisplatin or for 30 patients treated with uracil plus ftorafur. Conclusions Postoperative chemotherapy is associated with improved survival compared with that after surgical intervention alone. Selected patients with completely resected non-small cell lung cancer should be offered chemotherapy. Copyright © 2004 by The American Association for Thoracic Surgery.
Resumo:
Landscape change is an ongoing process even within established urban landscapes. Yet, analyses of fragmentation and deforestation have focused primarily on the conversion of non-urban to urban landscapes in rural landscapes and ignored urban landscapes. To determine the ecological effects of continued urbanization in urban landscapes, tree-covered patches were mapped in the Gwynns Falls watershed (17158.6 ha) in Maryland for 1994 and 1999 to document fragmentation, deforestation, and reforestation. The watershed was divided into lower (urban core), middle (older suburbs), and upper (recent suburbs) subsections. Over the entire watershed a net of 264.5 of 4855.5 ha of tree-covered patches were converted to urban land use-125 new tree-covered patches were added through fragmentation, 4 were added through reforestation, 43 were lost through deforestation, and 7 were combined with an adjacent patch. In addition, 180 patches were reduced in size. In the urban core, deforestation continued with conversion to commercial land use. Because of the lack of vegetation, commercial land uses are problematic for both species conservation and derived ecosystem benefits. In the lower subsection, shape complexity increased for tree-covered patches less than 10 ha. Changes in shape resulted from canopy expansion, planted materials, and reforestation of vacant sites. In the middle and upper subsections, the shape index value for tree-covered patches decreased, indicating simplification. Density analyses of the subsections showed no change with respect to patch densities but pointed out the importance of small patches (≤5 ha) as "stepping stone" to link large patches (e. g., ≥100 ha). Using an urban forest effect model, we estimated, for the entire watershed, total carbon loss and pollution removal, from 1994 to 1999, to be 14,235,889.2 kg and 13,011.4 kg, respectively due to urban land-use conversions.
Resumo:
Background There is evidence that family and friends influence children's decisions to smoke. Objectives To assess the effectiveness of interventions to help families stop children starting smoking. Search methods We searched 14 electronic bibliographic databases, including the Cochrane Tobacco Addiction Group specialized register, MEDLINE, EMBASE, PsycINFO, CINAHL unpublished material, and key articles' reference lists. We performed free-text internet searches and targeted searches of appropriate websites, and hand-searched key journals not available electronically. We consulted authors and experts in the field. The most recent search was 3 April 2014. There were no date or language limitations. Selection criteria Randomised controlled trials (RCTs) of interventions with children (aged 5-12) or adolescents (aged 13-18) and families to deter tobacco use. The primary outcome was the effect of the intervention on the smoking status of children who reported no use of tobacco at baseline. Included trials had to report outcomes measured at least six months from the start of the intervention. Data collection and analysis We reviewed all potentially relevant citations and retrieved the full text to determine whether the study was an RCT and matched our inclusion criteria. Two authors independently extracted study data for each RCT and assessed them for risk of bias. We pooled risk ratios using a Mantel-Haenszel fixed effect model. Main results Twenty-seven RCTs were included. The interventions were very heterogeneous in the components of the family intervention, the other risk behaviours targeted alongside tobacco, the age of children at baseline and the length of follow-up. Two interventions were tested by two RCTs, one was tested by three RCTs and the remaining 20 distinct interventions were tested only by one RCT. Twenty-three interventions were tested in the USA, two in Europe, one in Australia and one in India. The control conditions fell into two main groups: no intervention or usual care; or school-based interventions provided to all participants. These two groups of studies were considered separately. Most studies had a judgement of 'unclear' for at least one risk of bias criteria, so the quality of evidence was downgraded to moderate. Although there was heterogeneity between studies there was little evidence of statistical heterogeneity in the results. We were unable to extract data from all studies in a format that allowed inclusion in a meta-analysis. There was moderate quality evidence family-based interventions had a positive impact on preventing smoking when compared to a no intervention control. Nine studies (4810 participants) reporting smoking uptake amongst baseline non-smokers could be pooled, but eight studies with about 5000 participants could not be pooled because of insufficient data. The pooled estimate detected a significant reduction in smoking behaviour in the intervention arms (risk ratio [RR] 0.76, 95% confidence interval [CI] 0.68 to 0.84). Most of these studies used intensive interventions. Estimates for the medium and low intensity subgroups were similar but confidence intervals were wide. Two studies in which some of the 4487 participants already had smoking experience at baseline did not detect evidence of effect (RR 1.04, 95% CI 0.93 to 1.17). Eight RCTs compared a combined family plus school intervention to a school intervention only. Of the three studies with data, two RCTS with outcomes for 2301 baseline never smokers detected evidence of an effect (RR 0.85, 95% CI 0.75 to 0.96) and one study with data for 1096 participants not restricted to never users at baseline also detected a benefit (RR 0.60, 95% CI 0.38 to 0.94). The other five studies with about 18,500 participants did not report data in a format allowing meta-analysis. One RCT also compared a family intervention to a school 'good behaviour' intervention and did not detect a difference between the two types of programme (RR 1.05, 95% CI 0.80 to 1.38, n = 388). No studies identified any adverse effects of intervention. Authors' conclusions There is moderate quality evidence to suggest that family-based interventions can have a positive effect on preventing children and adolescents from starting to smoke. There were more studies of high intensity programmes compared to a control group receiving no intervention, than there were for other compairsons. The evidence is therefore strongest for high intensity programmes used independently of school interventions. Programmes typically addressed family functioning, and were introduced when children were between 11 and 14 years old. Based on this moderate quality evidence a family intervention might reduce uptake or experimentation with smoking by between 16 and 32%. However, these findings should be interpreted cautiously because effect estimates could not include data from all studies. Our interpretation is that the common feature of the effective high intensity interventions was encouraging authoritative parenting (which is usually defined as showing strong interest in and care for the adolescent, often with rule setting). This is different from authoritarian parenting (do as I say) or neglectful or unsupervised parenting.
Resumo:
BACKGROUND PTSD is an anxiety disorder related to exposure to a severe psychological trauma. Symptoms include re-experiencing the event, avoidance and arousal as well as distress and impairment resulting from these symptoms.Guidelines suggest a combination of both psychological therapy and pharmacotherapy may enhance treatment response, especially in those with more severe PTSD or in those who have not responded to either intervention alone. OBJECTIVES To assess whether the combination of psychological therapy and pharmacotherapy provides a more efficacious treatment for PTSD than either of these interventions delivered separately. SEARCH STRATEGY Searches were conducted on the trial registers kept by the CCDAN group (CCDANCTR-Studies and CCDANCTR-References) to June 2010. The reference sections of included studies and several conference abstracts were also scanned. SELECTION CRITERIA Patients of any age or gender, with chronic or recent onset PTSD arising from any type of event relevant to the diagnostic criteria were included. A combination of any psychological therapy and pharmacotherapy was included and compared to wait list, placebo, standard treatment or either intervention alone. The primary outcome was change in total PTSD symptom severity. Other outcomes included changes in functioning, depression and anxiety symptoms, suicide attempts, substance use, withdrawal and cost. DATA COLLECTION AND ANALYSIS Two or three review authors independently selected trials, assessed their 'risk of bias' and extracted trial and outcome data. We used a fixed-effect model for meta-analysis. The relative risk was used to summarise dichotomous outcomes and the mean difference and standardised mean difference were used to summarise continuous measures. MAIN RESULTS Four trials were eligible for inclusion, one of these trials (n =24) was on children and adolescents. All used an SSRI and prolonged exposure or a cognitive behavioural intervention. Two trials compared combination treatment with pharmacological treatment and two compared combination treatment with psychological treatment. Only two trials reported a total PTSD symptom score and these data could not be combined. There was no strong evidence to show if there were differences between the group receiving combined interventions compared to the group receiving psychological therapy (mean difference 2.44, 95% CI -2.87, 7.35 one study, n=65) or pharmacotherapy (mean difference -4.70, 95% CI -10.84 to 1.44; one study, n = 25). Trialists reported no significant differences between combination and single intervention groups in the other two studies. There were very little data reported for other outcomes, and in no case were significant differences reported. AUTHORS' CONCLUSIONS There is not enough evidence available to support or refute the effectiveness of combined psychological therapy and pharmacotherapy compared to either of these interventions alone. Further large randomised controlled trials are urgently required.
Resumo:
Healthcare-associated methicillin-resistant Staphylococcus aureus(MRSA) infection may cause increased hospital stay or, sometimes, death. Quantifying this effect is complicated because it is a time-dependent exposure: infection may prolong hospital stay, while longer stays increase the risk of infection. We overcome these problems by using a multinomial longitudinal model for estimating the daily probability of death and discharge. We then extend the basic model to estimate how the effect of MRSA infection varies over time, and to quantify the number of excess ICU days due to infection. We find that infection decreases the relative risk of discharge (relative risk ratio = 0.68, 95% credible interval: 0.54, 0.82), but is only indirectly associated with increased mortality. An infection on the first day of admission resulted in a mean extra stay of 0.3 days (95% CI: 0.1, 0.5) for a patient with an APACHE II score of 10, and 1.2 days (95% CI: 0.5, 2.0) for a patient with an APACHE II score of 30. The decrease in the relative risk of discharge remained fairly constant with day of MRSA infection, but was slightly stronger closer to the start of infection. These results confirm the importance of MRSA infection in increasing ICU stay, but suggest that previous work may have systematically overestimated the effect size.
Resumo:
Computational models for cardiomyocyte action potentials (AP) often make use of a large parameter set. This parameter set can contain some elements that are fitted to experimental data independently of any other element, some elements that are derived concurrently with other elements to match experimental data, and some elements that are derived purely from phenomenological fitting to produce the desired AP output. Furthermore, models can make use of several different data sets, not always derived for the same conditions or even the same species. It is consequently uncertain whether the parameter set for a given model is physiologically accurate. Furthermore, it is only recently that the possibility of degeneracy in parameter values in producing a given simulation output has started to be addressed. In this study, we examine the effects of varying two parameters (the L-type calcium current (I(CaL)) and the delayed rectifier potassium current (I(Ks))) in a computational model of a rabbit ventricular cardiomyocyte AP on both the membrane potential (V(m)) and calcium (Ca(2+)) transient. It will subsequently be determined if there is degeneracy in this model to these parameter values, which will have important implications on the stability of these models to cell-to-cell parameter variation, and also whether the current methodology for generating parameter values is flawed. The accuracy of AP duration (APD) as an indicator of AP shape will also be assessed.