402 resultados para High technology industries
em Queensland University of Technology - ePrints Archive
Resumo:
With the growth of high-technology industries and knowledge intensive services, the pursuit of industrial competitiveness has progressed from a broad concern with the processes of industrialisation to a more focused analysis of the factors explaining cross-national variation in the level of participation in knowledge industries. From an examination of cross-national data, the paper develops the proposition that particular elements of the domestic science, technology and industry infrastructure—such as the stock of knowledge and competence in the economy, the capacity for learning and generation of new ideas and the capacity to commercialise new ideas—vary cross-nationally and are related to the level of participation of a nation in knowledge intensive activities. Existing understandings of the role of the state in promoting industrial competitiveness might be expanded to incorporate an analysis of the contribution of the state through the building of competencies in science, technology and industry. Keywords: Knowledge; economy; comparative public policy; innovation; science and technology policy
Resumo:
The OECD suggests that countries now have a choice. They can focus on development based on either: competition via investment in technology and innovation - which is important in high knowledge industries and high innovation economies, or competition via exchange rates and wages - which is important in industries producing standardised, lower-tech goods and services. The first route will maximise higher-skilled, higher-paid employment growth and living standards. Given the lack of control over the exchange rate, the second route requires competition based on wages. It is essential to understand that markets themselves won’t shift a country from one path to the other. These conclusions arise from the OECD’s recognition that technical progress - the creation of new products or the adoption of more efficient methods of production - is the main source of economic growth and enhanced quality of life. Technological change is, the OECD suggests, ...also the engine for job creation as higher wages and profits resulting from technology-induced productivity gains and lower prices lead to increased demand for new products from existing as well as new industries (1997: 4).Further, Competitiveness in high-technology industries is mainly driven by technology factors and much less by wage and exchange rate movements, while the reverse is true in low-technology industries (OECD 1996e: 12). The OECD has shown that sound macroeconomic conditions, such as the low inflation and reduced public sector debt visible in almost all member countries in the 1990s, are not enough to deal with high levels of unemployment and the need to increase levels of income: If economic performance is to improve, additional structural reform, which can increase innovation and the diffusion of technologies within and among national economies, seems necessary (OECD 1997: 4 Emphasis added).
Resumo:
This document is a summary of the findings of the inaugural study commissioned by the Australian Business Foundation Limited. It was conducted by Professor Jane Marceau, Pro-Vice Chancellor (Research) at the University of Western Sydney Macarthur, Dr Karen Manley, Visiting Research Fellow at the University of Western Sydney Macarthur and Mr Derek Sicklen, Managing Director of Australian Economic Analysis Pty Limited. The full report is available from the Australian Business Foundation. The Australian Business Foundation Limited is a recently formed independent economic and industry policy think-tank. It has been established and sponsored by Australian Business Limited, a pre-eminent and long-standing industry association and business services network. The report is in three parts. The first reviews the key findings of contemporary international economic and innovation-oriented analyses of the characteristics of high growth economies. The second assesses the shape, structure and dynamics of Australian industry as these compare with the characteristics for successful economic development suggested in the literature. Finally, the report indicates the nature of urgently required policy directions.
Resumo:
The underlying objective of this study was to develop a novel approach to evaluate the potential for commercialisation of a new technology. More specifically, this study examined the 'ex-ante'. evaluation of the technology transfer process. For this purpose, a technology originating from the high technology sector was used. The technology relates to the application of software for the detection of weak signals from space, which is an established method of signal processing in the field of radio astronomy. This technology has the potential to be used in commercial and industrial areas other than astronomy, such as detecting water leakages in pipes. Its applicability to detecting water leakage was chosen owing to several problems with detection in the industry as well as the impact it can have on saving water in the environment. This study, therefore, will demonstrate the importance of interdisciplinary technology transfer. The study employed both technical and business evaluation methods including laboratory experiments and the Delphi technique to address the research questions. There are several findings from this study. Firstly, scientific experiments were conducted and these resulted in a proof of concept stage of the chosen technology. Secondly, validation as well as refinement of criteria from literature that can be used for „ex-ante. evaluation of technology transfer has been undertaken. Additionally, after testing the chosen technology.s overall transfer potential using the modified set of criteria, it was found that the technology is still in its early stages and will require further development for it to be commercialised. Furthermore, a final evaluation framework was developed encompassing all the criteria found to be important. This framework can help in assessing the overall readiness of the technology for transfer as well as in recommending a viable mechanism for commercialisation. On the whole, the commercial potential of the chosen technology was tested through expert opinion, thereby focusing on the impact of a new technology and the feasibility of alternate applications and potential future applications.
Resumo:
The importance of agriculture in many countries has tended to reduce as their economies move from a resource base to a manufacturing industry base. Although the level of agricultural production in first world countries has increased over the past two decades, this increase has generally been at a less significant rate compared to other sectors of the economies. Despite this increase in secondary and high technology industries, developed countries have continued to encourage and support their agricultural industries. This support has been through both tariffs and price support. Although the average farm production property may require this support to maintain long-term production, the better farms can actually achieve production levels and commodity prices that result in these units being competitive on a free market basis. This paper will analyse the total return performance of UK farmland over the period 1981-2004. This analysis will compare the total return from rural properties in the UK and compare this performance to commercial property returns (total, office, retail, industrial), equities and gilts over this 24-year period. The analysis will be based on the IPD UK let land index and the IPD property index. The portfolio diversification and risk-reduction benefits of UK farmland will be highlighted. The analysis shows that rural property has negative correlations with equities and gilts, as well as insignificant positive correlations with retail, industrial and office property. Rural property also provides portfolio diversification benefits.
Resumo:
The importance of agriculture in many countries has tended to reduce as their economies move from a resource base to a manufacturing industry base. Although the level of agricultural production in first world countries has increased over the past two decades, this increase has generally been at a less significant rate compared to other sectors of the economies. Despite this increase in secondary and high technology industries, developed countries have continued to encourage and support their agricultural industries. This support has been through both tariffs and price support. Following pressure from developing economies, particularly through the World Trade Organisation (WTO), GATT Uruguay round and the Cairns Group developed countries are now in various stages of winding back or de-coupling agricultural support within their economies. A major concern of farmers in protected agricultural markets is the impact of a free market trade in agricultural commodities on farm incomes, profitability and land values. This paper will analyse both the capital and income performance of the NSW rural land market over the period 1990-1999. This analysis will be based on several rural land use classifications and will compare the total return from rural properties based on the farm income generated by both the average farmer and those farmers considered to be in the top 20% of the various land use areas. The analysis will provide a comprehensive overview of rural production in a free trade economy.
Resumo:
The importance of agriculture in many countries has tended to reduce as their economies move from a resource base to a manufacturing industry base. Although the level of agricultural production in first world countries has increased over the past two decades, this increase has generally been at a less significant rate compared to other sectors of the economies. Despite this increase in secondary and high technology industries, developed countries have continued to encourage and support their agricultural industries. This support has been through both tariffs and price support. Following pressure from developing economies, particularly through the World Trade Organisation (WTO), GATT Uruguay round and the Cairns Group Developed countries are now in various stages of winding back or de-coupling agricultural support within their economies. A major concern of farmers in protected agricultural markets is the impact of a free market trade in agricultural commodities on farm incomes and land values. This paper will analyse the capital and income performance of the NSW rural land market over the period 1990-1999. This analysis will be based on land use and will compare the total return from rural properties based on world agricultural commodity prices.
Resumo:
Innovation can be defined broadly to include the development and uptake of new technology, the introduction of new products, the utilisation of new market opportunities and the implementation of new business processes including new forms of work organisation or management structures and approaches. Innovation, or the commercial application of new knowledge, is of increasing importance to economic competitiveness given the growth in production and trade in high technology industries and knowledge intensive service sectors such as business services (Edquist, Hommen and McKelvey 2001). An important field of innovation in modern economies is associated with the rapid development and application of information and communications technologies (ICTs). ICTs constitute an increasing share of value added, growth and employment and also impact on employment and productivity in other industry sectors. The structural transformation of modern economies associated with ICTs has led to an increase in the importance of information and knowledge resources (rather than physical capital) as inputs or factors of production. Technology and product innovations are often given central attention in innovation research, however, organisational and managerial changes have been recognised as critical. Over the last two decades, understandings of the nature and process of innovation have advanced significantly. In the 1950s and 1960s, there was a view that innovation resulted from basic research, or in essence that scientific research acted as a 'push' for innovation. As such there was a great deal of emphasis on formal research and development, undertaken either by governments or research and development units within business organisations. Radical innovations involving new products and new technological trajectories were thought to derive from basic research (Freeman 1995).
Resumo:
Digital technology offers enormous benefits (economic, quality of design and efficiency in use) if adopted to implement integrated ways of representing the physical world in a digital form. When applied across the full extent of the built and natural world, it is referred to as the Digital Built Environment (DBE) and encompasses a wide range of approaches and technology initiatives, all aimed at the same end goal: the development of a virtual world that sufficiently mirrors the real world to form the basis for the smart cities of the present and future, enable efficient infrastructure design and programmed maintenance, and create a new foundation for economic growth and social well-being through evidence-based analysis. The creation of a National Data Policy for the DBE will facilitate the creation of additional high technology industries in Australia; provide Governments, industries and citizens with greater knowledge of the environments they occupy and plan; and offer citizen-driven innovations for the future. Australia has slipped behind other nations in the adoption and execution of Building Information Modelling (BIM) and the principal concern is that the gap is widening. Data driven innovation added $67 billion to the Australian economy in 20131. Strong open data policy equates to $16 billion in new value2. Australian Government initiatives such as the Digital Earth inspired “National Map” offer a platform and pathway to embrace the concept of a “BIM Globe”, while also leveraging unprecedented growth in open source / open data collaboration. Australia must address the challenges by learning from international experiences—most notably the UK and NZ—and mandate the use of BIM across Government, extending the Framework for Spatial Data Foundation to include the Built Environment as a theme and engaging collaboration through a “BIM globe” metaphor. This proposed DBE strategy will modernise the Australian urban planning and the construction industry. It will change the way we develop our cities by fundamentally altering the dynamics and behaviours of the supply chains and unlocking new and more efficient ways of collaborating at all stages of the project life-cycle. There are currently two major modelling approaches that contribute to the challenge of delivering the DBE. Though these collectively encompass many (often competing) approaches or proprietary software systems, all can be categorised as either: a spatial modelling approach, where the focus is generally on representing the elements that make up the world within their geographic context; and a construction modelling approach, where the focus is on models that support the life cycle management of the built environment. These two approaches have tended to evolve independently, addressing two broad industry sectors: the one concerned with understanding and managing global and regional aspects of the world that we inhabit, including disciplines concerned with climate, earth sciences, land ownership, urban and regional planning and infrastructure management; the other is concerned with planning, design, construction and operation of built facilities and includes architectural and engineering design, product manufacturing, construction, facility management and related disciplines (a process/technology commonly known as Building Information Modelling, BIM). The spatial industries have a strong voice in the development of public policy in Australia, while the construction sector, which in 2014 accounted for around 8.5% of Australia’s GDP3, has no single voice and because of its diversity, is struggling to adapt to and take advantage of the opportunity presented by these digital technologies. The experience in the UK over the past few years has demonstrated that government leadership is very effective in stimulating industry adoption of digital technologies by, on the one hand, mandating the use of BIM on public procurement projects while at the same time, providing comparatively modest funding to address the common issues that confront the industry in adopting that way of working across the supply chain. The reported result has been savings of £840m in construction costs in 2013/14 according to UK Cabinet Office figures4. There is worldwide recognition of the value of bringing these two modelling technologies together. Australia has the expertise to exercise leadership in this work, but it requires a commitment by government to recognise the importance of BIM as a companion methodology to the spatial technologies so that these two disciplinary domains can cooperate in the development of data policies and information exchange standards to smooth out common workflows. buildingSMART Australasia, SIBA and their academic partners have initiated this dialogue in Australia and wish to work collaboratively, with government support and leadership, to explore the opportunities open to us as we develop an Australasian Digital Built Environment. As part of that programme, we must develop and implement a strategy to accelerate the adoption of BIM processes across the Australian construction sector while at the same time, developing an integrated approach in concert with the spatial sector that will position Australia at the forefront of international best practice in this area. Australia and New Zealand cannot afford to be on the back foot as we face the challenges of rapid urbanisation and change in the global environment. Although we can identify some exemplary initiatives in this area, particularly in New Zealand in response to the need for more resilient urban development in the face of earthquake threats, there is still much that needs to be done. We are well situated in the Asian region to take a lead in this challenge, but we are at imminent risk of losing the initiative if we do not take action now. Strategic collaboration between Governments, Industry and Academia will create new jobs and wealth, with the potential, for example, to save around 20% on the delivery costs of new built assets, based on recent UK estimates.
Resumo:
Principal Topic High technology consumer products such as notebooks, digital cameras and DVD players are not introduced into a vacuum. Consumer experience with related earlier generation technologies, such as PCs, film cameras and VCRs, and the installed base of these products strongly impacts the market diffusion of the new generation products. Yet technology substitution has received only sparse attention in the diffusion of innovation literature. Research for consumer durables has been dominated by studies of (first purchase) adoption (c.f. Bass 1969) which do not explicitly consider the presence of an existing product/technology. More recently, considerable attention has also been given to replacement purchases (c.f. Kamakura and Balasubramanian 1987). Only a handful of papers explicitly deal with the diffusion of technology/product substitutes (e.g. Norton and Bass, 1987: Bass and Bass, 2004). They propose diffusion-type aggregate-level sales models that are used to forecast the overall sales for successive generations. Lacking household data, these aggregate models are unable to give insights into the decisions by individual households - whether to adopt generation II, and if so, when and why. This paper makes two contributions. It is the first large-scale empirical study that collects household data for successive generations of technologies in an effort to understand the drivers of adoption. Second, in comparision to traditional analysis that evaluates technology substitution as an ''adoption of innovation'' type process, we propose that from a consumer's perspective, technology substitution combines elements of both adoption (adopting the new generation technology) and replacement (replacing the generation I product with generation II). Based on this proposition, we develop and test a number of hypotheses. Methodology/Key Propositions In some cases, successive generations are clear ''substitutes'' for the earlier generation, in that they have almost identical functionality. For example, successive generations of PCs Pentium I to II to III or flat screen TV substituting for colour TV. More commonly, however, the new technology (generation II) is a ''partial substitute'' for existing technology (generation I). For example, digital cameras substitute for film-based cameras in the sense that they perform the same core function of taking photographs. They have some additional attributes of easier copying and sharing of images. However, the attribute of image quality is inferior. In cases of partial substitution, some consumers will purchase generation II products as substitutes for their generation I product, while other consumers will purchase generation II products as additional products to be used as well as their generation I product. We propose that substitute generation II purchases combine elements of both adoption and replacement, but additional generation II purchases are solely adoption-driven process. Extensive research on innovation adoption has consistently shown consumer innovativeness is the most important consumer characteristic that drives adoption timing (Goldsmith et al. 1995; Gielens and Steenkamp 2007). Hence, we expect consumer innovativeness also to influence both additional and substitute generation II purchases. Hypothesis 1a) More innovative households will make additional generation II purchases earlier. 1 b) More innovative households will make substitute generation II purchases earlier. 1 c) Consumer innovativeness will have a stronger impact on additional generation II purchases than on substitute generation II purchases. As outlined above, substitute generation II purchases act, in part like a replacement purchase for the generation I product. Prior research (Bayus 1991; Grewal et al 2004) identified product age as the most dominant factor influencing replacements. Hence, we hypothesise that: Hypothesis 2: Households with older generation I products will make substitute generation II purchases earlier. Our survey of 8,077 households investigates their adoption of two new generation products: notebooks as a technology change to PCs, and DVD players as a technology shift from VCRs. We employ Cox hazard modelling to study factors influencing the timing of a household's adoption of generation II products. We determine whether this is an additional or substitute purchase by asking whether the generation I product is still used. A separate hazard model is conducted for additional and substitute purchases. Consumer Innovativeness is measured as domain innovativeness adapted from the scales of Goldsmith and Hofacker (1991) and Flynn et al. (1996). The age of the generation I product is calculated based on the most recent household purchase of that product. Control variables include age, size and income of household, and age and education of primary decision-maker. Results and Implications Our preliminary results confirm both our hypotheses. Consumer innovativeness has a strong influence on both additional purchases (exp = 1.11) and substitute purchases (exp = 1.09). Exp is interpreted as the increased probability of purchase for an increase of 1.0 on a 7-point innovativeness scale. Also consistent with our hypotheses, the age of the generation I product has a dramatic influence for substitute purchases of VCR/DVD (exp = 2.92) and a strong influence for PCs/notebooks (exp = 1.30). Exp is interpreted as the increased probability of purchase for an increase of 10 years in the age of the generation I product. Yet, also as hypothesised, there was no influence on additional purchases. The results lead to two key implications. First, there is a clear distinction between additional and substitute purchases of generation II products, each with different drivers. Treating these as a single process will mask the true drivers of adoption. For substitute purchases, product age is a key driver. Hence, implications for marketers of high technology products can utilise data on generation I product age (e.g. from warranty or loyalty programs) to target customers who are more likely to make a purchase.
Resumo:
This Paper first provides a review and analysis of the recent trends on innovation infrastructures developed in industrialised countries to promote innovation and competitiveness for high growth SMEs. It specifically aims to examine various spatial models developed to support provision of innovation infrastructure for high growth sector.
Resumo:
Principal Topic The Comprehensive Australian Study of Entrepreneurial Emergence (CAUSEE) represents the first Australian study to employ and extend the longitudinal and large scale systematic research developed for the Panel Study of Entrepreneurial Dynamics (PSED) in the US (Gartner, Shaver, Carter and Reynolds, 2004; Reynolds, 2007). This research approach addresses several shortcomings of other data sets including under coverage; selection bias; memory decay and hindsight bias, and lack of time separation between the assessment of causes and their assumed effects (Johnson et al 2006; Davidsson 2006). However, a remaining problem is that any a random sample of start-ups will be dominated by low potential, imitative ventures. In recognition of this issue CAUSEE supplemented PSED-type random samples with theoretically representative samples of the 'high potential' emerging ventures employing a unique methodology using novel multiple screening criteria. We define new ''high-potential'' ventures as new entrepreneurial innovative ventures with high aspirations and potential for growth. This distinguishes them from those ''lifestyle'' imitative businesses that start small and remain intentionally small (Timmons, 1986). CAUSEE is providing the opportunity to explore, for the first time, if process and outcomes of high potentials differ from those of traditional lifestyle firms. This will allows us to compare process and outcome attributes of the random sample with the high potential over sample of new firms and young firms. The attributes in which we will examine potential differences will include source of funding, and internationalisation. This is interesting both in terms of helping to explain why different outcomes occur but also in terms of assistance to future policymaking, given that high growth potential firms are increasingly becoming the focus of government intervention in economic development policies around the world. The first wave of data of a four year longitudinal study has been collected using these samples, allowing us to also provide some initial analysis on which to continue further research. The aim of this paper therefore is to present some selected preliminary results from the first wave of the data collection, with comparisons of high potential with lifestyle firms. We expect to see owing to greater resource requirements and higher risk profiles, more use of venture capital and angel investment, and more internationalisation activity to assist in recouping investment and to overcome Australia's smaller economic markets Methodology/Key Propositions In order to develop the samples of 'high potential' in the NF and YF categories a set of qualification criteria were developed. Specifically, to qualify, firms as nascent or young high potentials, we used multiple, partly compensating screening criteria related to the human capital and aspirations of the founders as well as the novelty of the venture idea, and venture high technology. A variety of techniques were also employed to develop a multi level dataset of sources to develop leads and firm details. A dataset was generated from a variety of websites including major stakeholders including the Federal and State Governments, Australian Chamber of Commerce, University Commercialisation Offices, Patent and Trademark Attorneys, Government Awards and Industry Awards in Entrepreneurship and Innovation, Industry lead associations, Venture Capital Association, Innovation directories including Australian Technology Showcase, Business and Entrepreneurs Magazines including BRW and Anthill. In total, over 480 industry, association, government and award sources were generated in this process. Of these, 74 discrete sources generated high potentials that fufilled the criteria. 1116 firms were contacted as high potential cases. 331 cases agreed to participate in the screener, with 279 firms (134 nascents, and 140 young firms) successfully passing the high potential criteria. 222 Firms (108 Nascents and 113 Young firms) completed the full interview. For the general sample CAUSEE conducts screening phone interviews with a very large number of adult members of households randomly selected through random digit dialing using screening questions which determine whether respondents qualify as 'nascent entrepreneurs'. CAUSEE additionally targets 'young firms' those that commenced trading from 2004 or later. This process yielded 977 Nascent Firms (3.4%) and 1,011 Young Firms (3.6%). These were directed to the full length interview (40-60 minutes) either directly following the screener or later by appointment. The full length interviews were completed by 594 NF and 514 YF cases. These are the cases we will use in the comparative analysis in this report. Results and Implications The results for this paper are based on Wave one of the survey which has been completed and the data obtained. It is expected that the findings will assist in beginning to develop an understanding of high potential nascent and young firms in Australia, how they differ from the larger lifestyle entrepreneur group that makes up the vast majority of the new firms created each year, and the elements that may contribute to turning high potential growth status into high growth realities. The results have implications for Government in the design of better conditions for the creation of new business, firms who assist high potentials in developing better advice programs in line with a better understanding of their needs and requirements, individuals who may be considering becoming entrepreneurs in high potential arenas and existing entrepreneurs make better decisions.
Resumo:
To understand the diffusion of high technology products such as PCs, digital cameras and DVD players it is necessary to consider the dynamics of successive generations of technology. From the consumer’s perspective, these technology changes may manifest themselves as either a new generation product substituting for the old (for instance digital cameras) or as multiple generations of a single product (for example PCs). To date, research has been confined to aggregate level sales models. These models consider the demand relationship between one generation of a product and a successor generation. However, they do not give insights into the disaggregate-level decisions by individual households – whether to adopt the newer generation, and if so, when. This paper makes two contributions. It is the first large scale empirical study to collect household data for successive generations of technologies in an effort to understand the drivers of adoption. Second, in contrast to traditional analysis in diffusion research that conceptualizes technology substitution as an “adoption of innovation” type process, we propose that from a consumer’s perspective, technology substitution combines elements of both adoption (adopting the new generation technology) and replacement (replacing generation I product with generation II). Key Propositions In some cases, successive generations are clear “substitutes” for the earlier generation (e.g. PCs Pentium I to II to III ). More commonly the new generation II technology is a “partial substitute” for existing generation I technology (e.g. DVD players and VCRs). Some consumers will purchase generation II products as substitutes for their generation I product, while other consumers will purchase generation II products as additional products to be used as well as their generation I product. We propose that substitute generation II purchases combine elements of both adoption and replacement, but additional generation II purchases are solely adoption-driven process. Moreover, drawing on adoption theory consumer innovativeness is the most important consumer characteristic for adoption timing of new products. Hence, we hypothesize consumer innovativeness to influence the timing of both additional and substitute generation II purchases but to have a stronger impact on additional generation II purchases. We further propose that substitute generation II purchases act partially as a replacement purchase for the generation I product. Thus, we hypothesize that households with older generation I products will make substitute generation II purchases earlier. Methods We employ Cox hazard modeling to study factors influencing the timing of a household’s adoption of generation II products. A separate hazard model is conducted for additional and substitute purchases. The age of the generation I product is calculated based on the most recent household purchase of that product. Control variables include size and income of household, age and education of decision-maker. Results and Implications Our preliminary results confirm both our hypotheses. Consumer innovativeness has a strong influence on both additional purchases and substitute purchases. Also consistent with our hypotheses, the age of the generation I product has a dramatic influence for substitute purchases of VCR/DVD players and a strong influence for PCs/notebooks. Yet, also as hypothesized, there was no influence on additional purchases. This implies that there is a clear distinction between additional and substitute purchases of generation II products, each with different drivers. For substitute purchases, product age is a key driver. Therefore marketers of high technology products can utilize data on generation I product age (e.g. from warranty or loyalty programs) to target customers who are more likely to make a purchase.
Resumo:
In a study aimed at better understanding how students adapt to new blended studio learning environments, all undergraduate and masters of architecture students at a large school of architecture in Australia, learned a semester of architectural design in newly renovated, technology embedded, design studio environments. The renovations addressed the lessons learned from a 2011 pilot study of a second year architectural design studio learned in a high technology embedded prototype digital laboratory. The new design studios were purpose designed for the architecture students and adapted Student-Centred Active Learning Environment for Undergraduate Programs design principles. At the end of the semester, the students completed a questionnaire about their experiences of learning in the new design studio environments. Using a dual method qualitative approach, the questionnaire data were coded and extrapolated using both thematic analysis and grounded theory methodology. The results from these two approaches were compared, contrasted and finally merged, to reveal five distinct emerging themes, which were instrumental in offering resistance or influencing adaptation to, the new blended studio learning environments. This paper reports on the study, discusses the major contributors to resistance and adaptation, and proposes points for consideration when renovating or designing new blended studio learning environments. This research extends the 2011 pilot study by the same authors: ‘Dichotomy in the design studio: Adapting to new blended learning environments’.