31 resultados para Hf-in-zircon

em Queensland University of Technology - ePrints Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The timing of widespread continental emergence is generally considered to have had a dramatic effect on the hydrological cycle, atmospheric conditions, and climate. New secondary ion mass spectrometry (SIMS) oxygen and laser-ablation–multicollector–inductively coupled plasma–mass spectrometry (LA-MC-ICP-MS) Lu-Hf isotopic results from dated zircon grains in the granitic Neoarchean Rum Jungle Complex provide a minimum time constraint on the emergence of continental crust above sea level for the North Australian craton. A 2535 ± 7 Ma monzogranite is characterized by magmatic zircon with slightly elevated δ18O (6.0‰–7.5‰ relative to Vienna standard mean ocean water [VSMOW]), consistent with some contribution to the magma from reworked supracrustal material. A supracrustal contribution to magma genesis is supported by the presence of metasedimentary rock enclaves, a large population of inherited zircon grains, and subchondritic zircon Hf (εHf = −6.6 to −4.1). A separate, distinct crustal source to the same magma is indicated by inherited zircon grains that are dominated by low δ18O values (2.5‰–4.8‰, n = 9 of 15) across a range of ages (3536–2598 Ma; εHf = −18.2 to +0.4). The low δ18O grains may be the product of one of two processes: (1) grain-scale diffusion of oxygen in zircon by exchange with a low δ18O magma or (2) several episodes of magmatic reworking of a Mesoarchean or older low δ18O source. Both scenarios require shallow crustal magmatism in emergent crust, to allow interaction with rocks altered by hydrothermal meteoric water in order to generate the low δ18O zircon. In the first scenario, assimilation of these altered rocks during Neoarchean magmatism generated low δ18O magma with which residual detrital zircons were able to exchange oxygen, while preserving their U-Pb systematics. In the second scenario, wholesale melting of the altered rocks occurred in several distinct events through the Mesoarchean, generating low δ18O magma from which zircon crystallized. Ultimately, in either scenario, the low δ18O zircons were entrained as inherited grains in a Neoarchean granite. The data suggest operation of a modern hydrological cycle by the Neoarchean and add to evidence for the increased emergence of continents by this time

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Large Igneous Provinces are exceptional intraplate igneous events throughout Earth’s history. Their significance and potential global impact is related to the total volume of magma intruded and released during these geologically brief events (peak eruptions are often within 1-5 Myrs duration) where millions to tens of millions of cubic kilometers of magma are produced. In some cases, at least 1% of the Earth’s surface has been directly covered in volcanic rock, being equivalent to the size of small continents with comparable crustal thicknesses. Large Igneous Provinces are thus important, albeit episodic episodes of new crust addition. However, most magmatism is basaltic so that contributions to crustal growth will not always be picked up in zircon geochronology studies that better trace major episodes of extension-related silicic magmatism and the silicic Large Igneous Provinces. Much headway has been made on our understanding of these anomalous igneous events over the last 25 years, driving many new ideas and models. This includes their: 1) global spatial and temporal distribution, with a long-term average of one event approximately every 20 Myrs, but a clear clustering of events at times of supercontinent break-up – Large Igneous Provinces are thus an integral part of the Wilson cycle and are becoming an increasingly important tool in reconnecting dispersed continental fragments; 2) compositional diversity that in part reflects their crustal setting of ocean basins, and continental interiors and margins where in the latter setting, LIP magmatism can be silicicdominant; 3) mineral and energy resources with major PGE and precious metal resources being hosted in these provinces, as well as magmatism impacting on the hydrocarbon potential of volcanic basins and rifted margins through enhancing source rock maturation, providing fluid migration pathways, and trap formation; 4) biospheric, hydrospheric and atmospheric impacts, with Large Igneous Provinces now widely regarded as a key trigger mechanism for mass extinctions, although the exact kill mechanism(s) are still being resolved; 5) role in mantle geodynamics and thermal evolution of the Earth, by potentially recording the transport of material from the lower mantle or core-mantle boundary to the Earth's surface and being a fundamental component in whole mantle convection models; and 6) recognition on the inner planets where the lack of plate tectonics and erosional processes and planetary antiquity means that the very earliest record of LIP events during planetary evolution may be better preserved than on Earth.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A straightforward procedure for the acid digestion of geological samples with SiO2 concentrations ranging between about 40 to 80%, is described. A powdered sample (200 mesh) of 500 mg was used and fused with 1000 mg spectroflux at about 1000 degreesC in a platinum crucible. The molten was subsequently digested in an aqueous solution of HNO3 at 100 degreesC. Several systematic digestion procedures were followed using various concentrations of HNO3. It was found that a relationship could be established between the dissolution-time and acid concentration. For an acid concentration of 15% an optimum dissolution-time of under 4 min was recorded. To verify that the dissolutions were complete, they were subjected to rigorous quality control tests. The turbidity and viscosity were examined at different intervals and the results were compared with that of deionised water. No significant change in either parameter was observed. The shelf-life of each solution lasted for several months, after which time polymeric silicic acid formed in some solutions, resulting in the presence of a gelatinous solid. The method is cost effective and is clearly well suited for routine applications on a small scale, especially in laboratories in developing countries. ICP-MS was applied to the determination of 13 Rare Earth Elements and Hf in a set of 107 archaeological samples subjected to the above digestion procedure. The distribution of these elements was examined and the possibility of using the REE's for provenance studies is discussed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

High heat-producing granites (HHPGs) are reservoir rocks for enhanced geothermal systems (EGS), yet the origins of their anomalous chemistry remain poorly understood. To gain a better understanding of the characteristic distribution of elemental depletions and enrichments (focussing on U, Th & K) within granite suites of different heritage and tectonic setting, and the processes that lead to these enrichments, we are undertaking a systematic accessory-mineral chronochemical study of two suites of S- and I-type granites in northern Queensland, as well as two archetypal HHPGs in Cornwall, England (S-type) and Soultz-sous- Forêts, France (I-type). Novel zircon LA-ICP-MS chronochemical methods will later be underpinned by a systematic petrographic, scanning electron microscope (SEM), and electron microprobe (EPMA) study of all the REE-Y-Th-U-rich accessory minerals to fully characterise how the composition, textural distributions and associations change with rock chemistry between and among the suites. Preliminary results indicate that zircons with inherited ages do not have anomalously high U (>1000 ppm) & Th (>400 ppm) values (Ahrens, 1965). Instead, enrichment in these HPE is seen in zircons dated to around the time of magmatic emplacement. These results indicate that enrichment arose primarily through fractional crystallisation of the granitic magmas. Our results support the suggestion that a source pre-enriched in the HPEs does not appear to be fundamental for the formation of all HHPGs. Instead fractional crystallisation processes, and the accessory minerals formed in magmas of differing initial compositions, are the key controls on the levels of enrichment observed (e.g. Champion & Chappell, 1992; Chappell & Hine, 2006). One implication is that the most fractionated granites may not be the most enriched in the HPEs and therefore prospective to future EGS development.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Black et al. (2004) identified a systematic difference between LA–ICP–MS and TIMS measurements of 206Pb/238U in zircons, which they correlated with the incompatible trace element content of the zircon. We show that the offset between the LA–ICP–MS and TIMS measured 206Pb/238U correlates more strongly with the total radiogenic Pb than with any incompatible trace element. This suggests that the cause of the 206Pb/238U offset is related to differences in the radiation damage (alpha dose) between the reference and unknowns. We test this hypothesis in two ways. First, we show that there is a strong correlation between the difference in the LA–ICP–MS and TIMS measured 206Pb/238U and the difference in the alpha dose received by unknown and reference zircons. The LA–ICP–MS ages for the zircons we have dated can be as much as 5.1% younger than their TIMS age to 2.1% older, depending on whether the unknown or reference received the higher alpha dose. Second, we show that by annealing both reference and unknown zircons at 850 °C for 48 h in air we can eliminate the alpha-dose-induced differences in measured 206Pb/238U. This was achieved by analyzing six reference zircons a minimum of 16 times in two round robin experiments: the first consisting of unannealed zircons and the second of annealed grains. The maximum offset between the LA–ICP–MS and TIMS measured 206Pb/238U for the unannealed zircons was 2.3%, which reduced to 0.5% for the annealed grains, as predicted by within-session precision based on counting statistics. Annealing unknown zircons and references to the same state prior to analysis holds the promise of reducing the 3% external error for the measurement of 206Pb/238U of zircon by LA–ICP–MS, indicated by Klötzli et al. (2009), to better than 1%, but more analyses of annealed zircons by other laboratories are required to evaluate the true potential of the annealing method.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Several I- and A-type granite, syenite plutons and spatially associated, giant Fe–Ti–V deposit-bearing mafic ultramafic layered intrusions occur in the Pan–Xi(Panzhihua–Xichang) area within the inner zone of the Emeishan large igneous province (ELIP). These complexes are interpreted to be related to the Emeishan mantle plume. We present LA-ICP-MS and SIMS zircon U–Pb ages and Hf–Nd isotopic compositions for the gabbros, syenites and granites from these complexes. The dating shows that the age of the felsic intrusive magmatism (256.2 ± 3.0–259.8 ± 1.6 Ma) is indistinguishable from that of the mafic intrusive magmatism (255.4 ± 3.1–259.5 ± 2.7 Ma) and represents the final phase of a continuous magmatic episode that lasted no more than 10 Myr. The upper gabbros in the mafic–ultramafic intrusions are generally more isotopically enriched (lower eNd and eHf) than the middle and lower gabbros, suggesting that the upper gabbros have experienced a higher level of crustal contamination than the lower gabbros. The significantly positive eHf(t) values of the A-type granites and syenites (+4.9 to +10.8) are higher than those of the upper gabbros of the associated mafic intrusion, which shows that they cannot be derived by fractional crystallization of these bodies. They are however identical to those of the mafic enclaves (+7.0 to +11.4) and middle and lower gabbros, implying that they are cogenetic. We suggest that they were generated by fractionation of large-volume, plume-related basaltic magmas that ponded deep in the crust. The deep-seated magma chamber erupted in two stages: the first near a density minimum in the basaltic fractionation trend and the second during the final stage of fractionation when the magma was a low density Fe-poor, Si-rich felsic magma. The basaltic magmas emplaced in the shallowlevel magma chambers differentiated to form mafic–ultramafic layered intrusions accompanied by a small amount of crustal assimilation through roof melting. Evolved A-type granites (synenites and syenodiorites) were produced dominantly by crystallization in the deep crustal magma chamber. In contrast, the I-type granites have negative eNd(t) [-6.3 to -7.5] and eHf(t) [-1.3 to -6.7] values, with the Nd model ages (T Nd DM2) of 1.63-1.67 Ga and Hf model ages (T Hf DM2) of 1.56-1.58 Ga, suggesting that they were mainly derived from partial melting of Mesoproterozoic crust. In combination with previous studies, this study also shows that plume activity not only gave rise to reworking of ancient crust, but also significant growth of juvenile crust in the center of the ELIP.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present study investigated metabolic responses to fat and carbohydrate ingestion in lean male individuals consuming an habitual diet high or low in fat. Twelve high-fat phenotypes (HF) and twelve low-fat phenotypes (LF) participated in the study. Energy intake and macronutrient intake variables were assessed using a food frequency questionnaire. Resting (RMR) and postprandial metabolic rate and substrate oxidation (respiratory quotient; RQ) were measured by indirect calorimetry. HF had a significantly higher RMR and higher resting heart rate than LF. These variables remained higher in HF following the macronutrient challenge. In all subjects the carbohydrate load increased metabolic rate and heart rate significantly more than the fat load. Fat oxidation (indicated by a low RQ) was significantly higher in HF than in LF following the fat load; the ability to oxidise a high carbohydrate load did not differ between the groups. Lean male subjects consuming a diet high in fat were associated with increased energy expenditure at rest and a relatively higher fat oxidation in response to a high fat load; these observations may be partly responsible for maintaining energy balance on a high-fat (high-energy) diet. In contrast, a low consumer of fat is associated with relatively lower energy expenditure at rest and lower fat oxidation, which has implications for weight gain if high-fat foods or meals are periodically introduced to the diet.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Harmful Algal Blooms (HABs) have become an important environmental concern along the western coast of the United States. Toxic and noxious blooms adversely impact the economies of coastal communities in the region, pose risks to human health, and cause mortality events that have resulted in the deaths of thousands of fish, marine mammals and seabirds. One goal of field-based research efforts on this topic is the development of predictive models of HABs that would enable rapid response, mitigation and ultimately prevention of these events. In turn, these objectives are predicated on understanding the environmental conditions that stimulate these transient phenomena. An embedded sensor network (Fig. 1), under development in the San Pedro Shelf region off the Southern California coast, is providing tools for acquiring chemical, physical and biological data at high temporal and spatial resolution to help document the emergence and persistence of HAB events, supporting the design and testing of predictive models, and providing contextual information for experimental studies designed to reveal the environmental conditions promoting HABs. The sensor platforms contained within this network include pier-based sensor arrays, ocean moorings, HF radar stations, along with mobile sensor nodes in the form of surface and subsurface autonomous vehicles. FreewaveTM radio modems facilitate network communication and form a minimally-intrusive, wireless communication infrastructure throughout the Southern California coastal region, allowing rapid and cost-effective data transfer. An emerging focus of this project is the incorporation of a predictive ocean model that assimilates near-real time, in situ data from deployed Autonomous Underwater Vehicles (AUVs). The model then assimilates the data to increase the skill of both nowcasts and forecasts, thus providing insight into bloom initiation as well as the movement of blooms or other oceanic features of interest (e.g., thermoclines, fronts, river discharge, etc.). From these predictions, deployed mobile sensors can be tasked to track a designated feature. This focus has led to the creation of a technology chain in which algorithms are being implemented for the innovative trajectory design for AUVs. Such intelligent mission planning is required to maneuver a vehicle to precise depths and locations that are the sites of active blooms, or physical/chemical features that might be sources of bloom initiation or persistence. The embedded network yields high-resolution, temporal and spatial measurements of pertinent environmental parameters and resulting biology (see Fig. 1). Supplementing this with ocean current information and remotely sensed imagery and meteorological data, we obtain a comprehensive foundation for developing a fundamental understanding of HAB events. This then directs labor- intensive and costly sampling efforts and analyses. Additionally, we provide coastal municipalities, managers and state agencies with detailed information to aid their efforts in providing responsible environmental stewardship of their coastal waters.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Voluminous (≥3·9 × 105 km3), prolonged (∼18 Myr) explosive silicic volcanism makes the mid-Tertiary Sierra Madre Occidental province of Mexico one of the largest intact silicic volcanic provinces known. Previous models have proposed an assimilation–fractional crystallization origin for the rhyolites involving closed-system fractional crystallization from crustally contaminated andesitic parental magmas, with <20% crustal contributions. The lack of isotopic variation among the lower crustal xenoliths inferred to represent the crustal contaminants and coeval Sierra Madre Occidental rhyolite and basaltic andesite to andesite volcanic rocks has constrained interpretations for larger crustal contributions. Here, we use zircon age populations as probes to assess crustal involvement in Sierra Madre Occidental silicic magmatism. Laser ablation-inductively coupled plasma-mass spectrometry analyses of zircons from rhyolitic ignimbrites from the northeastern and southwestern sectors of the province yield U–Pb ages that show significant age discrepancies of 1–4 Myr compared with previously determined K/Ar and 40Ar/39Ar ages from the same ignimbrites; the age differences are greater than the errors attributable to analytical uncertainty. Zircon xenocrysts with new overgrowths in the Late Eocene to earliest Oligocene rhyolite ignimbrites from the northeastern sector provide direct evidence for some involvement of Proterozoic crustal materials, and, potentially more importantly, the derivation of zircon from Mesozoic and Eocene age, isotopically primitive, subduction-related igneous basement. The youngest rhyolitic ignimbrites from the southwestern sector show even stronger evidence for inheritance in the age spectra, but lack old inherited zircon (i.e. Eocene or older). Instead, these Early Miocene ignimbrites are dominated by antecrystic zircons, representing >33 to ∼100% of the dated population; most antecrysts range in age between ∼20 and 32 Ma. A sub-population of the antecrystic zircons is chemically distinct in terms of their high U (>1000 ppm to 1·3 wt %) and heavy REE contents; these are not present in the Oligocene ignimbrites in the northeastern sector of the Sierra Madre Occidental. The combination of antecryst zircon U–Pb ages and chemistry suggests that much of the zircon in the youngest rhyolites was derived by remelting of partially molten to solidified igneous rocks formed during preceding phases of Sierra Madre Occidental volcanism. Strong Zr undersaturation, and estimations for very rapid dissolution rates of entrained zircons, preclude coeval mafic magmas being parental to the rhyolite magmas by a process of lower crustal assimilation followed by closed-system crystal fractionation as interpreted in previous studies of the Sierra Madre Occidental rhyolites. Mafic magmas were more probably important in providing a long-lived heat and material flux into the crust, resulting in the remelting and recycling of older crust and newly formed igneous materials related to Sierra Madre Occidental magmatism.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High fidelity simulation as a teaching and learning approach is being embraced by many schools of nursing. Our school embarked on integrating high fidelity (HF) simulation into the undergraduate clinical education program in 2011. Low and medium fidelity simulation has been used for many years, but this did not simplify the integration of HF simulation. Alongside considerations of how and where HF simulation would be integrated, issues arose with: student consent and participation for observed activities; data management of video files; staff development, and conceptualising how methods for student learning could be researched. Simulation for undergraduate student nurses commenced as a formative learning activity, undertaken in groups of eight, where four students undertake the ‘doing’ role and four are structured observers, who then take a formal role in the simulation debrief. Challenges for integrating simulation into student learning included conceptualising and developing scenarios to trigger students’ decision making and application of skills, knowledge and attitudes explicit to solving clinical ‘problems’. Developing and planning scenarios for students to ‘try out’ skills and make decisions for problem solving lay beyond choosing pre-existing scenarios inbuilt with the software. The supplied scenarios were not concept based but rather knowledge, skills and technology (of the manikin) focussed. Challenges lay in using the technology for the purpose of building conceptual mastery rather than using technology simply because it was available. As we integrated use of HF simulation into the final year of the program, focus was on building skills, knowledge and attitudes that went beyond technical skill, and provided an opportunity to bridge the gap with theory-based knowledge that students often found difficult to link to clinical reality. We wished to provide opportunities to develop experiential knowledge based on application and clinical reasoning processes in team environments where problems are encountered, and to solve them, the nurse must show leadership and direction. Other challenges included students consenting for simulations to be videotaped and ethical considerations of this. For example if one student in a group of eight did not consent, did this mean they missed the opportunity to undertake simulation, or that others in the group may be disadvantaged by being unable to review their performance. This has implications for freely given consent but also for equity of access to learning opportunities for students who wished to be taped and those who did not. Alongside this issue were the details behind data management, storage and access. Developing staff with varying levels of computer skills to use software and undertake a different approach to being the ‘teacher’ required innovation where we took an experiential approach. Considering explicit learning approaches to be trialled for learning was not a difficult proposition, but considering how to enact this as research with issues of blinding, timetabling of blinded groups, and reducing bias for testing results of different learning approaches along with gaining ethical approval was problematic. This presentation presents examples of these challenges and how we overcame them.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this research, we have used vibrational spectroscopy to study the phosphate mineral kosnarite KZr2(PO4)3. Interest in this mineral rests with the ability of zirconium phosphates (ZP) to lock in radioactive elements. ZP have the capacity to concentrate and immobilize the actinide fraction of radioactive phases in homogeneous zirconium phosphate phases. The Raman spectrum of kosnarite is characterized by a very intense band at 1,026 cm−1 assigned to the symmetric stretching vibration of the PO4 3− ν1 symmetric stretching vibration. The series of bands at 561, 595 and 638 cm−1 are assigned to the ν4 out-of-plane bending modes of the PO4 3− units. The intense band at 437 cm−1 with other bands of lower wavenumber at 387, 405 and 421 cm−1 is assigned to the ν2 in-plane bending modes of the PO4 3− units. The number of bands in the antisymmetric stretching region supports the concept that the symmetry of the phosphate anion in the kosnarite structure is preserved. The width of the infrared spectral profile and its complexity in contrast to the well-resolved Raman spectrum show that the pegmatitic phosphates are better studied with Raman spectroscopy.