427 resultados para Heuristic Methods
em Queensland University of Technology - ePrints Archive
Resumo:
Traffic conflicts at railway junctions are very conmon, particularly on congested rail lines. While safe passage through the junction is well maintained by the signalling and interlocking systems, minimising the delays imposed on the trains by assigning the right-of-way sequence sensibly is a bonus to the quality of service. A deterministic method has been adopted to resolve the conflict, with the objective of minimising the total weighted delay. However, the computational demand remains significant. The applications of different heuristic methods to tackle this problem are reviewed and explored, elaborating their feasibility in various aspects and comparing their relative merits for further studies. As most heuristic methods do not guarantee a global optimum, this study focuses on the trade-off between computation time and optimality of the resolution.
Resumo:
With daily commercial and social activity in cities, regulation of train service in mass rapid transit railways is necessary to maintain service and passenger flow. Dwell-time adjustment at stations is one commonly used approach to regulation of train service, but its control space is very limited. Coasting control is a viable means of meeting the specific run-time in an inter-station run. The current practice is to start coasting at a fixed distance from the departed station. Hence, it is only optimal with respect to a nominal operational condition of the train schedule, but not the current service demand. The advantage of coasting can only be fully secured when coasting points are determined in real-time. However, identifying the necessary starting point(s) for coasting under the constraints of current service conditions is no simple task as train movement is governed by a large number of factors. The feasibility and performance of classical and heuristic searching measures in locating coasting point(s) is studied with the aid of a single train simulator, according to specified inter-station run times.
Resumo:
Train delay is one of the most important indexes to evaluate the service quality of the railway. Because of the interactions of movement among trains, a delayed train may conflict with trains scheduled on other lines at junction area. Train that loses conflict may be forced to stop or slow down because of restrictive signals, which consequently leads to the loss of run-time and probably enlarges more delays. This paper proposes a time-saving train control method to recover delays as soon as possible. In the proposed method, golden section search is adopted to identify the optimal train speed at the expected time of restrictive signal aspect upgrades, which enables the train to depart from the conflicting area as soon as possible. A heuristic method is then developed to attain the advisory train speed profile assisting drivers in train control. Simulation study indicates that the proposed method enables the train to recover delays as soon as possible in case of disturbances at railway junctions, in comparison with the traditional maximum traction strategy and the green wave strategy.
Resumo:
Evolutionary computation is an effective tool for solving optimization problems. However, its significant computational demand has limited its real-time and on-line applications, especially in embedded systems with limited computing resources, e.g., mobile robots. Heuristic methods such as the genetic algorithm (GA) based approaches have been investigated for robot path planning in dynamic environments. However, research on the simulated annealing (SA) algorithm, another popular evolutionary computation algorithm, for dynamic path planning is still limited mainly due to its high computational demand. An enhanced SA approach, which integrates two additional mathematical operators and initial path selection heuristics into the standard SA, is developed in this work for robot path planning in dynamic environments with both static and dynamic obstacles. It improves the computing performance of the standard SA significantly while giving an optimal or near-optimal robot path solution, making its real-time and on-line applications possible. Using the classic and deterministic Dijkstra algorithm as a benchmark, comprehensive case studies are carried out to demonstrate the performance of the enhanced SA and other SA algorithms in various dynamic path planning scenarios.
Resumo:
Increasing global competition, rapid technological changes, advances in manufacturing and information technology and discerning customers are forcing supply chains to adopt improvement practices that enable them to deliver high quality products at a lower cost and in a shorter period of time. A lean initiative is one of the most effective approaches toward achieving this goal. In the lean improvement process, it is critical to measure current and desired performance level in order to clearly evaluate the lean implementation efforts. Many attempts have tried to measure supply chain performance incorporating both quantitative and qualitative measures but failed to provide an effective method of measuring improvements in performances for dynamic lean supply chain situations. Therefore, the necessity of appropriate measurement of lean supply chain performance has become imperative. There are many lean tools available for supply chains; however, effectiveness of a lean tool depends on the type of the product and supply chain. One tool may be highly effective for a supply chain involved in high volume products but may not be effective for low volume products. There is currently no systematic methodology available for selecting appropriate lean strategies based on the type of supply chain and market strategy This thesis develops an effective method to measure the performance of supply chain consisting of both quantitative and qualitative metrics and investigates the effects of product types and lean tool selection on the supply chain performance Supply chain performance matrices and the effects of various lean tools over performance metrics mentioned in the SCOR framework have been investigated. A lean supply chain model based on the SCOR metric framework is then developed where non- lean and lean as well as quantitative and qualitative metrics are incorporated in appropriate metrics. The values of appropriate metrics are converted into triangular fuzzy numbers using similarity rules and heuristic methods. Data have been collected from an apparel manufacturing company for multiple supply chain products and then a fuzzy based method is applied to measure the performance improvements in supply chains. Using the fuzzy TOPSIS method, which chooses an optimum alternative to maximise similarities with positive ideal solutions and to minimise similarities with negative ideal solutions, the performances of lean and non- lean supply chain situations for three different apparel products have been evaluated. To address the research questions related to effective performance evaluation method and the effects of lean tools over different types of supply chains; a conceptual framework and two hypotheses are investigated. Empirical results show that implementation of lean tools have significant effects over performance improvements in terms of time, quality and flexibility. Fuzzy TOPSIS based method developed is able to integrate multiple supply chain matrices onto a single performance measure while lean supply chain model incorporates qualitative and quantitative metrics. It can therefore effectively measure the improvements for supply chain after implementing lean tools. It is demonstrated that product types involved in the supply chain and ability to select right lean tools have significant effect on lean supply chain performance. Future study can conduct multiple case studies in different contexts.
Resumo:
Whole image descriptors have recently been shown to be remarkably robust to perceptual change especially compared to local features. However, whole-image-based localization systems typically rely on heuristic methods for determining appropriate matching thresholds in a particular environment. These environment-specific tuning requirements and the lack of a meaningful interpretation of these arbitrary thresholds limits the general applicability of these systems. In this paper we present a Bayesian model of probability for whole-image descriptors that can be seamlessly integrated into localization systems designed for probabilistic visual input. We demonstrate this method using CAT-Graph, an appearance-based visual localization system originally designed for a FAB-MAP-style probabilistic input. We show that using whole-image descriptors as visual input extends CAT-Graph’s functionality to environments that experience a greater amount of perceptual change. We also present a method of estimating whole-image probability models in an online manner, removing the need for a prior training phase. We show that this online, automated training method can perform comparably to pre-trained, manually tuned local descriptor methods.
Resumo:
Much has been written about transferring class materials and teaching techniques to digital platforms, but less has been written about applying heuristic organizing constructs in the same manner. With the transformation of learning ecologies over the past decades as well as requirements to adjust to constantly shifting digital tools and environments, the challenges for learning facilitators are to readily adapt and change, as well as to engage a changing learner demographic. However, most importantly is to engage most effectively with learners in these online environments. This article reviews the existing literature in the heuristic construct of academagogy [1] and applies a case study methodology to discussion of the first application of academagogy to the online delivery of an undergraduate design unit. Through a focus on effective teaching and learning techniques, the transfer from face-to-face (f2f) to the digital realm is explored through four main focal points: Tools for teaching, teaching and learning, communicating with students, and effective teaching methods. These four focal points are then used to discuss ways to meet the challenges of teaching online including how they create new dimensions in teaching practice and how the digital experience changes learning experiences. The article concludes with reflection and consolidation of the similarities and differences between the face-to-face and digital deliveries, and by suggesting changes to the academagogic heuristic to enable its use more easily in a digital space.