290 resultados para Hepatic drug metabolism

em Queensland University of Technology - ePrints Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The accumulation of deficits with increasing age results in a decline in the functional capacity of multiple organs and systems. These changes can have a significant influence on the pharmacokinetics and pharmacodynamics of prescribed drugs. Although alterations in body composition and worsening renal clearance are important considerations, for most drugs the liver has the greatest effect on metabolism. Age-related change in hepatic function thereby causes much of the variability in older people’s responses to medication. In this review, we propose that a decline in the ability of the liver to inactivate toxins may contribute to a proinflammatory state in which frailty can develop. Since inflammation also downregulates drug metabolism, medication prescribed to frail older people in accordance with disease-specific guidelines may undergo reduced systemic clearance, leading to adverse drug reactions, further functional decline and increasing polypharmacy, exacerbating rather than ameliorating frailty status. We also describe how increasing chronological age and frailty status impact liver size, blood flow and protein binding and enzymes of drug metabolism. This is used to contextualise our discussion of appropriate prescribing practices. For example, while the general axiom of ‘start low, go slow’ should underpin the initiation of medication (titrating to a defined therapeutic goal), it is important to consider whether drug clearance is flow or capacity-limited. By summarising the effect of age-related changes in hepatic function on medications commonly used in older people, we aim to provide a guide that will have high clinical utility for practising geriatricians.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The anticonvulsant phenytoin (5,5-diphenylhydantoin) provokes a skin rash in 5 to 10% of patients, which heralds the start of an idiosyncratic reaction that may result from covalent modification of normal self proteins by reactive drug metabolites. Phenytoin is metabolized by cytochrome P450 (P450) enzymes primarily to 5-(p-hydroxyphenyl-),5-phenylhydantoin (HPPH), which may be further metabolized to a catechol that spontaneously oxidizes to semiquinone and quinone species that covalently modify proteins. The aim of this study was to determine which P450s catalyze HPPH metabolism to the catechol, proposed to be the final enzymatic step in phenytoin bioactivation. Recombinant human P450s were coexpressed with NADPH-cytochrome P450 reductase in Escherichia coli. Novel bicistronic expression vectors were constructed for P450 2C19 and the three major variants of P450 2C9, i.e., 2C9*1, 2C9*2, and 2C9*3. HPPH metabolism and covalent adduct formation were assessed in parallel. P450 2C19 was the most effective catalyst of HPPH oxidation to the catechol metabolite and was also associated with the highest levels of covalent adduct formation. P450 3A4, 3A5, 3A7, 2C9*1, and 2C9*2 also catalyzed bioactivation of HPPH, but to a lesser extent. Fluorographic analysis showed that the major targets of adduct formation in bacterial membranes were the catalytic P450 forms, as suggested from experiments with human liver microsomes. These results suggest that P450 2C19 and other forms from the 2C and 3A subfamilies may be targets as well as catalysts of drug-protein adduct formation from phenytoin.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Recently it has been shown that the consumption of a diet high in saturated fat is associated with impaired insulin sensitivity and increased incidence of type 2 diabetes. In contrast, diets that are high in monounsaturated fatty acids (MUFAs) or polyunsaturated fatty acids (PUFAs), especially very long chain n-3 fatty acids (FAs), are protective against disease. However, the molecular mechanisms by which saturated FAs induce the insulin resistance and hyperglycaemia associated with metabolic syndrome and type 2 diabetes are not clearly defined. It is possible that saturated FAs may act through alternative mechanisms compared to MUFA and PUFA to regulate of hepatic gene expression and metabolism. It is proposed that, like MUFA and PUFA, saturated FAs regulate the transcription of target genes. To test this hypothesis, hepatic gene expression analysis was undertaken in a human hepatoma cell line, Huh-7, after exposure to the saturated FA, palmitate. These experiments showed that palmitate is an effective regulator of gene expression for a wide variety of genes. A total of 162 genes were differentially expressed in response to palmitate. These changes not only affected the expression of genes related to nutrient transport and metabolism, they also extend to other cellular functions including, cytoskeletal architecture, cell growth, protein synthesis and oxidative stress response. In addition, this thesis has shown that palmitate exposure altered the expression patterns of several genes that have previously been identified in the literature as markers of risk of disease development, including CVD, hypertension, obesity and type 2 diabetes. The altered gene expression patterns associated with an increased risk of disease include apolipoprotein-B100 (apo-B100), apo-CIII, plasminogen activator inhibitor 1, insulin-like growth factor-I and insulin-like growth factor binding protein 3. This thesis reports the first observation that palmitate directly signals in cultured human hepatocytes to regulate expression of genes involved in energy metabolism as well as other important genes. Prolonged exposure to long-chain saturated FAs reduces glucose phosphorylation and glycogen synthesis in the liver. Decreased glucose metabolism leads to elevated rates of lipolysis, resulting in increased release of free FAs. Free FAs have a negative effect on insulin action on the liver, which in turn results in increased gluconeogenesis and systemic dyslipidaemia. It has been postulated that disruption of glucose transport and insulin secretion by prolonged excessive FA availability might be a non-genetic factor that has contributed to the staggering rise in prevalence of type 2 diabetes. As glucokinase (GK) is a key regulatory enzyme of hepatic glucose metabolism, changes in its activity may alter flux through the glycolytic and de novo lipogenic pathways and result in hyperglycaemia and ultimately insulin resistance. This thesis investigated the effects of saturated FA on the promoter activity of the glycolytic enzyme, GK, and various transcription factors that may influence the regulation of GK gene expression. These experiments have shown that the saturated FA, palmitate, is capable of decreasing GK promoter activity. In addition, quantitative real-time PCR has shown that palmitate incubation may also regulate GK gene expression through a known FA sensitive transcription factor, sterol regulatory element binding protein-1c (SREBP-1c), which upregulates GK transcription. To parallel the investigations into the mechanisms of FA molecular signalling, further studies of the effect of FAs on metabolic pathway flux were performed. Although certain FAs reduce SREBP-1c transcription in vitro, it is unclear whether this will result in decreased GK activity in vivo where positive effectors of SREBP-1c such as insulin are also present. Under these conditions, it is uncertain if the inhibitory effects of FAs would be overcome by insulin. The effects of a combination of FAs, insulin and glucose on glucose phosphorylation and metabolism in cultured primary rat hepatocytes at concentrations that mimic those in the portal circulation after a meal was examined. It was found that total GK activity was unaffected by an increased concentration of insulin, but palmitate and eicosapentaenoic acid significantly lowered total GK activity in the presence of insulin. Despite the fact that total GK enzyme activity was reduced in response to FA incubation, GK enzyme translocation from the inactive, nuclear bound, to active, cytoplasmic state was unaffected. Interestingly, none of the FAs tested inhibited glucose phosphorylation or the rate of glycolysis when insulin is present. These results suggest that in the presence of insulin the levels of the active, unbound cytoplasmic GK are sufficient to buffer a slight decrease in GK enzyme activity and decreased promoter activity caused by FA exposure. Although a high fat diet has been associated with impaired hepatic glucose metabolism, there is no evidence from this thesis that FAs themselves directly modulate flux through the glycolytic pathway in isolated primary hepatocytes when insulin is also present. Therefore, although FA affected expression of a wide range of genes, including GK, this did not affect glycolytic flux in the presence of insulin. However, it may be possible that a saturated FA-induced decrease in GK enzyme activity when combined with the onset of insulin resistance may promote the dys-regulation of glucose homeostasis and the subsequent development of hyperglycaemia, metabolic syndrome and type 2 diabetes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Acepromazine (ACP) is a useful therapeutic drug, but is a prohibited substance in competition horses. The illicit use of ACP is difficult to detect due to its rapid metabolism, so this study investigated the ACP metabolite 2-(1-hydroxyethyl)promazine sulphoxide (HEPS) as a potential forensic marker. Acepromazine maleate, equivalent to 30 mg of ACP, was given IV to 12 racing-bred geldings. Blood and urine were collected for 7 days post-administration and analysed for ACP and HEPS by liquid chromatography–mass spectrometry (LC–MS). Acepromazine was quantifiable in plasma for up to 3 h with little reaching the urine unmodified. Similar to previous studies, there was wide variation in the distribution and metabolism of ACP. The metabolite HEPS was quantifiable for up to 24 h in plasma and 144 h in urine. The metabolism of ACP to HEPS was fast and erratic, so the early phase of the HEPS emergence could not be modelled directly, but was assumed to be similar to the rate of disappearance of ACP. However, the relationship between peak plasma HEPS and the y-intercept of the kinetic model was strong (P = 0.001, r2 = 0.72), allowing accurate determination of the formation pharmacokinetics of HEPS. Due to its rapid metabolism, testing of forensic samples for the parent drug is redundant with IV administration. The relatively long half-life of HEPS and its stable behaviour beyond the initial phase make it a valuable indicator of ACP use, and by determining the urine-to-plasma concentration ratios for HEPS, the approximate dose of ACP administration may be estimated.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Purpose: The objective of the study was to assess the bioequivalence of two tablet formulations of capecitabine and to explore the effect of age, gender, body surface area and creatinine clearance on the systemic exposure to capecitabine and its metabolites. Methods: The study was designed as an open, randomized two-way crossover trial. A single oral dose of 2000 mg capecitabine was administered on two separate days to 25 patients with solid tumors. On one day, the patients received four 500-mg tablets of formulation B (test formulation) and on the other day, four 500-mg tablets of formulation A (reference formulation). The washout period between the two administrations was between 2 and 8 days. After each administration, serial blood and urine samples were collected for up to 12 and 24 h, respectively. Unchanged capecitabine and its metabolites were determined in plasma using LC/MS-MS and in urine by NMRS. Results: Based on the primary pharmacokinetic parameter, AUC(0-∞) of 5'-DFUR, equivalence was concluded for the two formulations, since the 90% confidence interval of the estimate of formulation B relative to formulation A of 97% to 107% was within the acceptance region 80% to 125%. There was no clinically significant difference between the t(max) for the two formulations (median 2.1 versus 2.0 h). The estimate for C(max) was 111% for formulation B compared to formulation A and the 90% confidence interval of 95% to 136% was within the reference region 70% to 143%. Overall, these results suggest no relevant difference between the two formulations regarding the extent to which 5'-DFUR reached the systemic circulation and the rate at which 5'-DFUR appeared in the systemic circulation. The overall urinary excretions were 86.0% and 86.5% of the dose, respectively, and the proportion recovered as each metabolite was similar for the two formulations. The majority of the dose was excreted as FBAL (61.5% and 60.3%), all other chemical species making a minor contribution. Univariate and multivariate regression analysis to explore the influence of age, gender, body surface area and creatinine clearance on the log-transformed pharmacokinetic parameters AUC(0-∞) and C(max) of capecitabine and its metabolites revealed no clinically significant effects. The only statistically significant results were obtained for AUC(0-∞) and C(max) of intact drug and for C(max) of FBAL, which were higher in females than in males. Conclusion: The bioavailability of 5'-DFUR in the systemic circulation was practically identical after administration of the two tablet formulations. Therefore, the two formulations can be regarded as bioequivalent. The variables investigated (age, gender, body surface area, and creatinine clearance) had no clinically significant effect on the pharmacokinetics of capecitabine or its metabolites.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Although cytosolic glutathione S-transferase (GST) enzymes occupy a key position in biological detoxification processes, two of the most relevant human isoenzymes, GSTT1-1 and GSTM1-1, are genetically deleted (non-functional alleles GSTT1*0 and GSTM1*0) in a high percentage of the human population, with major ethnic differences. The structures of the GSTT and GSTM gene areas explain the underlying genetic processes. GSTT1-1 is highly conserved during evolution and plays a major role in phase-II biotransformation of a number of drugs and industrial chemicals, e.g. cytostatic drugs, hydrocarbons and halogenated hydrocarbons. GSTM1-1 is particularly relevant in the deactivation of carcinogenic intermediates of polycyclic aromatic hydrocarbons. Several lines of evidence suggest that hGSTT1-1 and/or hGSTM1-1 play a role in the deactivation of reactive oxygen species that are likely to be involved in cellular processes of inflammation, ageing and degenerative diseases. There is cumulating evidence that combinations of the GSTM1*0 state with other genetic traits affecting the metabolism of carcinogens (CYP1A1, GSTP1) may predispose the aero-digestive tract and lung, especially in smokers, to a higher risk of cancer. The GSTM1*0 status appears also associated with a modest increase in the risk of bladder cancer, consistent with a GSTM1 interaction with carcinogenic tobacco smoke constituents. Both human GST deletions, although largely counterbalanced by overlapping substrate affinities within the GST superfamily, have consequences when the organism comes into contact with distinct man-made chemicals. This appears relevant in industrial toxicology and in drug metabolism.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Deficits in lentiform nucleus volume and morphometry are implicated in a number of genetically influenced disorders, including Parkinson's disease, schizophrenia, and ADHD. Here we performed genome-wide searches to discover common genetic variants associated with differences in lentiform nucleus volume in human populations. We assessed structural MRI scans of the brain in two large genotyped samples: the Alzheimer's Disease Neuroimaging Initiative (ADNI; N = 706) and the Queensland Twin Imaging Study (QTIM; N = 639). Statistics of association from each cohort were combined meta-analytically using a fixed-effects model to boost power and to reduce the prevalence of false positive findings. We identified a number of associations in and around the flavin-containing monooxygenase (FMO) gene cluster. The most highly associated SNP, rs1795240, was located in the FMO3 gene; after meta-analysis, it showed genome-wide significant evidence of association with lentiform nucleus volume (PMA = 4. 79 × 10-8). This commonly-carried genetic variant accounted for 2. 68 % and 0. 84 % of the trait variability in the ADNI and QTIM samples, respectively, even though the QTIM sample was on average 50 years younger. Pathway enrichment analysis revealed significant contributions of this gene to the cytochrome P450 pathway, which is involved in metabolizing numerous therapeutic drugs for pain, seizures, mania, depression, anxiety, and psychosis. The genetic variants we identified provide replicated, genome-wide significant evidence for the FMO gene cluster's involvement in lentiform nucleus volume differences in human populations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

- Introduction Clinical pharmacokinetic studies of antibiotics can establish evidence-based dosing regimens that improve the likelihood of eradicating the pathogen at the site of infection, reduce the potential for selection of resistant pathogens, and minimize harm to the patient. Innovations in small volume sampling (< 50 μL) or ‘microsampling’ may result in less-invasive sample collection, self-sampling and dried storage. Microsampling may open up opportunities in patient groups where sampling is challenging. - Areas Covered The challenges for implementation of microsampling to assure suitability of the results, include: acceptable study design, regulatory agency acceptance, and meeting bioanalytical validation requirements. This manuscript covers various microsampling methods, including dried blood/plasma spots, volumetric absorptive microsampling, capillary microsampling, plasma preparation technologies and solid-phase microextraction. - Expert Opinion The available analytical technology is being underutilized due to a lack of bridging studies and validated bioanalytical methods. These deficiencies represent major impediments to the application of microsampling to antibiotic pharmacokinetic studies. A conceptual framework for the assessment of the suitability of microsampling in clinical pharmacokinetic studies of antibiotics is provided. This model establishes a ‘contingency approach’ with consideration of the antibiotic and the type and location of the patient, as well as the more prescriptive bioanalytical validation protocols.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objectives In non-alcoholic fatty liver disease (NAFLD), hepatic steatosis is intricately linked with a number of metabolic alterations. We studied substrate utilisation in NAFLD during basal, insulin-stimulated and exercise conditions, and correlated these outcomes with disease severity. Methods 20 patients with NAFLD (mean±SD body mass index (BMI) 34.1±6.7 kg/m2) and 15 healthy controls (BMI 23.4±2.7 kg/m2) were assessed. Respiratory quotient (RQ), whole-body fat (Fatox) and carbohydrate (CHOox) oxidation rates were determined by indirect calorimetry in three conditions: basal (resting and fasted), insulin-stimulated (hyperinsulinaemic–euglycaemic clamp) and exercise (cycling at an intensity to elicit maximal Fatox). Severity of disease and steatosis were determined by liver histology, hepatic Fatox from plasma β-hydroxybutyrate concentrations, aerobic fitness expressed as , and visceral adipose tissue (VAT) measured by computed tomography. Results Within the overweight/obese NAFLD cohort, basal RQ correlated positively with steatosis (r=0.57, p=0.01) and was higher (indicating smaller contribution of Fatox to energy expenditure) in patients with NAFLD activity score (NAS) ≥5 vs <5 (p=0.008). Both results were independent of VAT, % body fat and BMI. Compared with the lean control group, patients with NAFLD had lower basal whole-body Fatox (1.2±0.3 vs 1.5±0.4 mg/kgFFM/min, p=0.024) and lower basal hepatic Fatox (ie, β-hydroxybutyrate, p=0.004). During exercise, they achieved lower maximal Fatox (2.5±1.4 vs. 5.8±3.7 mg/kgFFM/min, p=0.002) and lower (p<0.001) than controls. Fatox during exercise was not associated with disease severity (p=0.79). Conclusions Overweight/obese patients with NAFLD had reduced hepatic Fatox and reduced whole-body Fatox under basal and exercise conditions. There was an inverse relationship between ability to oxidise fat in basal conditions and histological features of NAFLD including severity of steatosis and NAS

Relevância:

30.00% 30.00%

Publicador:

Resumo:

AIMS: Increases in inflammatory markers, hepatic enzymes and physical inactivity are associated with the development of the metabolic syndrome (MetS). We examined whether inflammatory markers and hepatic enzymes are correlated with traditional risk factors for MetS and studied the effects of resistance training (RT) on these emerging risk factors in individuals with a high number of metabolic risk factors (HiMF, 2.9 +/- 0.8) and those with a low number of metabolic risk factors (LoMF, 0.5 +/- 0.5). METHODS: Twenty-eight men and 27 women aged 50.8 +/- 6.5 years (mean +/- sd) participated in the study. Participants were randomized to four groups, HiMF training (HiMFT), HiMF control (HiMFC), LoMF training (LoMFT) and LoMF control (LoMFC). Before and after 10 weeks of RT [3 days/week, seven exercises, three sets with intensity gradually increased from 40-50% of one repetition maximum (1RM) to 75-85% of 1RM], blood samples were obtained for the measurement of pro-inflammatory cytokines, C-reactive protein (CRP), gamma-glutamyltransferase (GGT) and alanine aminotransferase (ALT). RESULTS: At baseline, HiMF had higher interleukin-6 (33.9%), CRP (57.1%), GGT (45.2%) and ALT (40.6%) levels, compared with LoMF (all P < 0.05). CRP, GGT and ALT correlated with the number of risk factors (r = 0.48, 0.51 and 0.57, respectively, all P < 0.01) and with other anthropometric and clinical measures (r range from 0.26 to 0.60, P < 0.05). RT did not significantly alter inflammatory markers or hepatic enzymes (all P > 0.05). CONCLUSIONS: HiMF was associated with increased inflammatory markers and hepatic enzyme concentrations. RT did not reduce inflammatory markers and hepatic enzymes in individuals with HiMF.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To enhance the therapeutic efficacy and reduce the adverse effects of traditional Chinese medicine, practitioners often prescribe combinations of plant species and/or minerals, called formulae. Unfortunately, the working mechanisms of most of these compounds are difficult to determine and thus remain unknown. In an attempt to address the benefits of formulae based on current biomedical approaches, we analyzed the components of Yinchenhao Tang, a classical formula that has been shown to be clinically effective for treating hepatic injury syndrome. The three principal components of Yinchenhao Tang are Artemisia annua L., Gardenia jasminoids Ellis, and Rheum Palmatum L., whose major active ingredients are 6,7-dimethylesculetin (D), geniposide (G), and rhein (R), respectively. To determine the mechanisms underlying the efficacy of this formula, we conducted a systematic analysis of the therapeutic effects of the DGR compound using immunohistochemistry, biochemistry, metabolomics, and proteomics. Here, we report that the DGR combination exerts a more robust therapeutic effect than any one or two of the three individual compounds by hitting multiple targets in a rat model of hepatic injury. Thus, DGR synergistically causes intensified dynamic changes in metabolic biomarkers, regulates molecular networks through target proteins, has a synergistic/additive effect, and activates both intrinsic and extrinsic pathways.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Skin cancer is one of the most commonly occurring cancer types, with substantial social, physical, and financial burdens on both individuals and societies. Although the role of UV light in initiating skin cancer development has been well characterized, genetic studies continue to show that predisposing factors can influence an individual's susceptibility to skin cancer and response to treatment. In the future, it is hoped that genetic profiles, comprising a number of genetic markers collectively involved in skin cancer susceptibility and response to treatment or prognosis, will aid in more accurately informing practitioners' choices of treatment. Individualized treatment based on these profiles has the potential to increase the efficacy of treatments, saving both time and money for the patient by avoiding the need for extensive or repeated treatment. Increased treatment responses may in turn prevent recurrence of skin cancers, reducing the burden of this disease on society. Currently existing pharmacogenomic tests, such as those that assess variation in the metabolism of the anticancer drug fluorouracil, have the potential to reduce the toxic effects of anti-tumor drugs used in the treatment of non-melanoma skin cancer (NMSC) by determining individualized appropriate dosage. If the savings generated by reducing adverse events negate the costs of developing these tests, pharmacogenomic testing may increasingly inform personalized NMSC treatment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The metabolism of arachidonic acid through lipoxygenase pathways leads to the generation of various biologically active eicosanoids. The expression of these enzymes vary throughout the progression of various cancers, and thereby they have been shown to regulate aspects of tumor development. Substantial evidence supports a functional role for lipoxygenase-catalyzed arachidonic and linoleic acid metabolism in cancer development. Pharmacologic and natural inhibitors of lipoxygenases have been shown to suppress carcinogenesis and tumor growth in a number of experimental models. Signaling of hydro[peroxy]fatty acids following arachidonic or linoleic acid metabolism potentially effect diverse biological phenomenon regulating processes such as cell growth, cell survival, angiogenesis, cell invasion, metastatic potential and immunomodulation. However, the effects of distinct LOX isoforms differ considerably with respect to their effects on both the individual mechanisms described and the tumor being examined. 5-LOX and platelet type 12-LOX are generally considered pro-carcinogenic, with the role of 15-LOX-1 remaining controversial, while 15-LOX-2 suppresses carcinogenesis. In this review, we focus on the molecular mechanisms regulated by LOX metabolism in some of the major cancers. We discuss the effects of LOXs on tumor cell proliferation, their roles in cell cycle control and cell death induction, effects on angiogenesis, migration and the immune response, as well as the signal transduction pathways involved in these processes. Understanding the molecular mechanisms underlying the anti-tumor effect of specific, or general, LOX inhibitors may lead to the design of biologically and pharmacologically targeted therapeutic strategies inhibiting LOX isoforms and/or their biologically active metabolites, that may ultimately prove useful in the treatment of cancer, either alone or in combination with conventional therapies. © 2007 Springer Science+Business Media, LLC.