147 resultados para Hamstring Strain Injur

em Queensland University of Technology - ePrints Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hamstring strain injuries (HSIs) are common in a number of sports and incidence rates have not declined in recent times. Additionally, the high rate of recurrent injuries suggests that our current understanding of HSI and re-injury risk is incomplete. Whilst the multifactoral nature of HSIs is agreed upon by many, often individual risk factors and/or causes of injury are examined in isolation. This review aims to bring together the causes, risk factors and interventions associated with HSIs to better understand why HSIs are so prevalent. Running is often identified as the primary activity type for HSIs and given the high eccentric forces and moderate muscle strain placed on the hamstrings during running these factors are considered to be part of the aetiology of HSIs. However, the exact causes of HSIs remain unknown and whilst eccentric contraction and muscle strain purportedly play a role, accumulated muscle damage and/or a single injurious event may also contribute. Potentially, all of these factors interact to varying degrees depending on the injurious activity type (i.e. running, kicking). Furthermore, anatomical factors, such as the biarticular organization, the dual innervations of biceps femoris (BF), fibre type distribution, muscle architecture and the degree of anterior pelvic tilt, have all been implicated. Each of these variables impact upon HSI risk via a number of different mechanisms that include increasing hamstring muscle strain and altering the susceptibility of the hamstrings to muscle damage. Reported risk factors for HSIs include age, previous injury, ethnicity, strength imbalances, flexibility and fatigue. Of these, little is known, definitively, about why previous injury increases the risk of future HSIs. Nevertheless, interventions put in place to reduce the incidence of HSIs by addressing modifiable risk factors have focused primarily on increasing eccentric strength, correcting strength imbalances and improving flexibility. The response to these intervention programmes has been mixed with varied levels of success reported. A conceptual framework is presented suggesting that neuromuscular inhibition following HSIs may impede the rehabilitation process and subsequently lead to maladaptation of hamstring muscle structure and function, including preferentially eccentric weakness, atrophy of the previously injured muscles and alterations in the angle of peak knee flexor torque. This remains an area for future research and practitioners need to remain aware of the multifactoral nature of HSIs if injury rates are to decline.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hamstring strain injuries are amongst the most common and problematic injuries in a wide range of sports that involve high speed running. The comparatively high rate of hamstring injury recurrence is arguably the most concerning aspect of these injuries. A number of modifiable and nonmodifiable risk factors are proposed to predispose athletes to hamstring strains. Potentially, the persistence of risk factors and the development of maladaptations following injury may explain injury recurrence. Here, the role of neuromuscular inhibition following injury is discussed as a potential mechanism for several maladaptations associated with hamstring re-injury. These maladaptations include eccentric hamstring weakness, selective hamstring atrophy and shifts in the knee flexor torque-joint angle relationship. Current evidence indicates that athletes return to competition after hamstring injury having developed maladaptations that predispose them to further injury. When rehabilitating athletes to return to competition following hamstring strain injury, the role of neuromuscular inhibition in re-injury should be considered.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Hamstring strain injuries (HSI) are prevalent in sport and re-injury rates have been high for many years. Maladaptation following HSI are implicated in injury recurrence however nervous system function following HSI has received little attention. Aim: To determine if recreational athletes with a history of unilateral HSI, who have returned to training and competition, will exhibit lower levels of voluntary activation (VA) and median power frequency (MPF) in the previously injured limb compared to the uninjured limb at long muscle lengths. Methods: Twenty-eight recreational athletes were recruited. Of these, 13 athletes had a history of unilateral HSI and 15 had no history of HSI. Following familiarisation, all athletes undertook isokinetic dynamometry testing and surface electromyography assessment of the biceps femoris long head and medial hamstrings during concentric and eccentric contractions at ± 180 and ± 60deg/s. Results: The previously injured limb was weaker at all contraction speeds compared to the uninjured limb (+180deg/s mean difference(MD) = 9.3Nm, p = 0.0036; +60deg/s MD = 14.0Nm, p = 0.0013; -60deg/s MD = 18.3Nm, p = 0.0007; -180deg/s MD = 20.5Nm, p = 0.0007) whilst VA was only lower in the biceps femoris long head during eccentric contractions (-60deg/s MD = 0.13, p = 0.0025; -180deg/s MD = 0.13, p = 0.0003). There were no between limb differences in medial hamstring VA or MPF from either biceps femoris long head or medial hamstrings in the injured group. The uninjured group showed no between limb differences with any of the tested variables. Conclusion: Previously injured hamstrings were weaker than the contralateral uninjured hamstring at all tested speeds and contraction modes. During eccentric contractions biceps femoris long head VA was lower in the previously injured limb suggesting neural control of biceps femoris long head may be altered following HSI. Current rehabilitation practices have been unsuccessful in restoring strength and VA following HSI. Restoration of these markers should be considered when determining the success of rehabilitation from HSI. Further investigations are required to elucidate the full impact of lower levels of biceps femoris long head VA following HSI on rehabilitation outcomes and re-injury risk.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Hamstring strain injuries (HSIs) are prevalent in sport and re-injury rates have been high for many years. Whilst much focus has centred on the impact of previous hamstring strain injury on maximal eccentric strength, high rates of torque development is also of interest, given the important role of the hamstrings during the terminal swing phase of gait. The impact of prior strain injury on neuromuscular function of the hamstrings during tasks requiring high rates of torque development has received little attention. The purpose of this study is to determine if recreational athletes with a history of unilateral hamstring strain injury, who have returned to training and competition, will exhibit lower levels of eccentric muscle activation, rate of torque development and impulse 30, 50 and 100ms after the onset of electromyographical or torque development in the previously injured limb compared to the uninjured limb. Methods: Twenty-six recreational athletes were recruited. Of these, 13 athletes had a history of unilateral hamstring strain injury (all confined to biceps femoris long head) and 13 had no history of hamstring strain injury. Following familiarisation, all athletes undertook isokinetic dynamometry testing and surface electromyography assessment of the biceps femoris long head and medial hamstrings during eccentric contractions at -60 and -1800.s-1. Results: In the injured limb of the injured group, compared to the contralateral uninjured limb rate of torque development and impulse was lower during -600.s-1 eccentric contractions at 50 (RTD, p=0.008; IMP, p=0.005) and 100ms (RTD, p=0.001; IMP p<0.001) after the onset of contraction. There was also a non-significant trend for rate of torque development during -1800.s-1 to be lower 100ms after onset of contraction (p=0.064). Biceps femoris long head muscle activation was lower at 100ms at both contraction speeds (-600.s-1, p=0.009; -1800.s-1, p=0.009). Medial hamstring activation did not differ between limbs in the injured group. Comparisons in the uninjured group showed no significant between limbs difference for any variables. Conclusion: Previously injured hamstrings displayed lower rate of torque development and impulse during eccentric contraction. Lower muscle activation was confined to the biceps femoris long head. Regardless of whether these deficits are the cause of or the result of injury, these findings have important implications for hamstring strain injury and re-injury and suggest greater attention be given to neural function of the knee flexors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background/Aim Hamstring strain injuries (HSIs) have remained the most prevalent injury in the Australian football league (AFL) over the past 21 regular seasons. The impact of HSIs in sport is often expressed as regular season games missed due to injury. However the financial cost of athletes missing games due to injury has not been investigated. The aim of this report is to estimate the financial cost of games missed due to HSIs in the AFL. Method Data was collected using publically available information from the AFL’s injury report and the official AFL annual report for the past 10 competitive AFL seasons. Average athlete salary and injury epidemiology data was used to determine the average yearly financial cost of HSIs for AFL clubs and the average financial cost of a single HSI over this time period. Results Across the observed period, average yearly financial cost of HSIs per club increased by 71% compared to a 43% increase in average yearly athlete salary. Over the same time period the average financial cost of a single HSI increased by 56% from $25,603 in 2003 to $40,021 in 2012, despite little change in HSI rates during the period. Conclusion The observed increased financial cost of HSIs was ultimately explained by the failure of teams to decrease HSI rates, but coupled with increases in athlete salaries over the past 10 season. The information presented in this report will highlight the financial cost of HSIs and other sporting injuries, raising greater awareness and the need for further funding for research into injury prevention strategies to maximise economical return for investment in athletes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose To observe the incidence rates of hamstring strain injuries (HSIs) across different competition levels and ages during the Penn Relays Carnival. Methods Over a 3-year period all injuries treated by the medical staff were recorded. The type of injury, anatomic location, event in which the injury occurred, competition level and demographic data were documented. Absolute and relative HSI (per 1000 participants) were determined and odds ratios (OR) were calculated between genders, competition levels and events. Results Throughout the study period 48,473 athletes registered to participate in the Penn Relays Carnival, with 118 HSIs treated by the medical team. High school females displayed lesser risk of HSI than high school males (OR = 0.55, p = 0.021), and masters athletes were more likely than high school (OR = 4.26, p < 0.001) and college (OR = 3.55, p = 0.001) level athletes to suffer a HSI. The 4x400m relay displayed a greater likelihood of HSI compared to the 4x100m relay (OR = 1.77, p = 0.008). Conclusions High school males and masters levels athletes are most likely to suffer HSI, and there is higher risk in 400m events compared to 100m events.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background Hamstring strain injuries (HSIs) are the most common injury type in Australian football and the rate of recurrence has been consistently high for a number of years. Long lasting neuromuscular inhibition has been noted in previously injured athletes but it is not known if this influences athletes adaptive response to training. Purpose To determine if elite Australian footballers with a prior unilateral HSI (previously injured group) display lesser improvements in eccentric hamstring strength during pre-season training compared to athletes without a history of HSI (control group). Study design Prospective cohort study. Methods Ninety-nine elite Australian footballers participated (17 with a history of unilateral HSI in the previous 12 month period). Eccentric hamstring strength was assessed at the start and end of pre-season training using an instrumented Nordic hamstring device. Change in eccentric strength across preseason was determine in absolute terms and normalised to start of preseason strength. Start of preseason strength was used as a covariate to control for differences in starting strength. Results The left and right limbs in the control group showed no difference in absolute or relative change (left limb absolute change, 60.7±72.9N; relative change, 1.28±0.34; right limb absolute change, 48.6±83.8N; relative change, 1.24±0.43) . Similarly, the injured and uninjured limbs from the previously injured group showed no difference for either absolute or relative measures of change (injured limb absolute change, 13.1±57.7N; relative change, 1.07±0.18; uninjured limb absolute change, 14.7±54.0N; relative change, 1.07±0.22N). The previously injured group displayed a significantly lesser increase in eccentric hamstring strength across the preseason (absolute change, 13.9±55.0; relative change, 1.07±0.20) compared to the control group (absolute change, 54.6±78.5; relative change, 1.26±0.39) for both absolute and relative measures (p < 0.001), even after controlling for differences in start of pre-season eccentric hamstring strength, which had a significant effect on strength improvement. Conclusion Elite Australian footballers with a unilateral HSI history displayed lesser improvements in eccentric hamstring strength across preseason training. The smaller improvements were not restricted to the previously injured limb as the contralateral limb also displayed similarly small improvements in eccentric strength. Whether this is the cause of or the result of injury remains to be seen, but it has the potential to contribute to the risk of hamstring strain re-injury.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study aimed to determine: 1) the spatial patterns of hamstring activation during the Nordic hamstring exercise (NHE); 2) whether previously injured hamstrings display activation deficits during the NHE, and; 3) whether previously injured hamstrings exhibit altered cross-sectional area. Ten healthy, recreationally active males with a history of unilateral hamstring strain injury underwent functional magnetic resonance imaging (fMRI) of their thighs before and after 6 sets of 10 repetitions of the NHE. Transverse (T2) relaxation times of all hamstring muscles (biceps femoris long head, (BFlh); biceps femoris short head (BFsh); semitendinosus (ST); semimembranosus (SM)), were measured at rest and immediately after the NHE and cross-sectional area (CSA) was measured at rest. For the uninjured limb, the ST’s percentage increase in T2 with exercise was 16.8, 15.8 and 20.2% greater than the increases exhibited by the BFlh, BFsh and SM, respectively (p<0.002 for all). Previously injured hamstring muscles (n=10) displayed significantly smaller increases in T2 post-exercise than the homonymous muscles in the uninjured contralateral limb (mean difference -7.2%, p=0.001). No muscles displayed significant between limb differences in CSA. During the NHE, the ST is preferentially activated and previously injured hamstring muscles display chronic activation deficits compared to uninjured contralateral muscles.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Hamstring strain injuries (HSI) are the predominant non-contact injury in many sports. Intermittent running has been shown to result in preferential reductions in eccentric hamstring strength, which increase the risk of sustaining a HSI. The eccentric specific nature of this decline in hamstring function implicates central mechanisms, as peripheral fatigue mechanisms tend to impact upon both concentric and eccentric contractions modes. However, neural function of the hamstrings, such as the median power frequency (MPF) of the surface electromyography signal has yet to be examined in the fatigued hamstring following intermittent sprint running. AIM: To determine the impact of fatigue induced by intermittent sprinting on the MPF of the medial and lateral hamstring muscles. METHODS: Fifteen recreationally active males completed 18 × 20m overground sprints. Maximal strength (concentric and eccentric knee flexor and concentric knee extensor) was determined isokinetically at the velocities of ±180.s-1 and ±60.s- while hamstring muscle activation was assessed using surface electromyography, before and 15 minutes after the running protocol. RESULTS: Overground intermittent running caused a significant reduction in eccentric knee flexor strength (27.2 Nm; 95% CI = 11.2 to 43.3; p=0.0001) but not concentric strength (9.3 Nm; 95% CI = -6.7 to 25.3; P=0.6361). Following the overground running, MPF of the lateral hamstrings showed a significant decline eccentrically (0.86; 95% CI = 0.59 to 1.54; P=0.038) and concentrically (0.76; 95%CI = 0.66 to 0.83; P=0.039). Similar declines in MPF were also noted in the medial hamstrings eccentrically (1.54; 95% CI = 0.59 to 7.9; P=0.005) and concentrically (1.18; 95% CI = 0.44 to 6.8; P=0.040). CONCLUSION: Whilst sprint running induced fatigue led to a eccentric specific reduction in knee flexor torque, MPF was suppressed across both contraction modes. This would indicate that factors associated with the decline in MPF do not appear to explain the contraction mode-specific loss of strength after intermittent sprints. This would implicate other central mechanisms, such as declines in voluntary activation, in explaining the eccentric specific decline in strength seen following sprint running.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

STUDY DESIGN: Reliability and case-control injury study. OBJECTIVES: 1) To determine if a novel device, designed to measure eccentric knee flexors strength via the Nordic hamstring exercise (NHE), displays acceptable test-retest reliability; 2) to determine normative values for eccentric knee flexors strength derived from the device in individuals without a history of hamstring strain injury (HSI) and; 3) to determine if the device could detect weakness in elite athletes with a previous history of unilateral HSI. BACKGROUND: HSIs and reinjuries are the most common cause of lost playing time in a number of sports. Eccentric knee flexors weakness is a major modifiable risk factor for future HSIs, however there is a lack of easily accessible equipment to assess this strength quality. METHODS: Thirty recreationally active males without a history of HSI completed NHEs on the device on 2 separate occasions. Intraclass correlation coefficients (ICCs), typical error (TE), typical error as a co-efficient of variation (%TE), and minimum detectable change at a 95% confidence interval (MDC95) were calculated. Normative strength data were determined using the most reliable measurement. An additional 20 elite athletes with a unilateral history of HSI within the previous 12 months performed NHEs on the device to determine if residual eccentric muscle weakness existed in the previously injured limb. RESULTS: The device displayed high to moderate reliability (ICC = 0.83 to 0.90; TE = 21.7 N to 27.5 N; %TE = 5.8 to 8.5; MDC95 = 76.2 to 60.1 N). Mean±SD normative eccentric flexors strength, based on the uninjured group, was 344.7 ± 61.1 N for the left and 361.2 ± 65.1 N for the right side. The previously injured limbs were 15% weaker than the contralateral uninjured limbs (mean difference = 50.3 N; 95% CI = 25.7 to 74.9N; P < .01), 15% weaker than the normative left limb data (mean difference = 50.0 N; 95% CI = 1.4 to 98.5 N; P = .04) and 18% weaker than the normative right limb data (mean difference = 66.5 N; 95% CI = 18.0 to 115.1 N; P < .01). CONCLUSIONS: The experimental device offers a reliable method to determine eccentric knee flexors strength and strength asymmetry and revealed residual weakness in previously injured elite athletes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This thesis examined the impact of previous hamstring injury and fatigue on the function of the hamstring muscles and their neural control. The work established the role of neuromuscular inhibition after hamstring injury and involved the development of a new field testing device for eccentric hamstring strength, which is now in high demand in elite sport worldwide. David has four peer-reviewed publications from this doctoral work.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Purpose Is eccentric hamstring strength and between limb imbalance in eccentric strength, measured during the Nordic hamstring exercise, a risk factor for hamstring strain injury (HSI)? Methods Elite Australian footballers (n=210) from five different teams participated. Eccentric hamstring strength during the Nordic was taken at the commencement and conclusion of preseason training and in season. Injury history and demographic data were also collected. Reports on prospectively occurring HSIs were completed by team medical staff. Relative risk (RR) was determined for univariate data and logistic regression was employed for multivariate data. Results Twenty-eight HSIs were recorded. Eccentric hamstring strength below 256N at the start of preseason and 279N at the end of preseason increased risk of future HSI 2.7 (relative risk, 2.7; 95% confidence interval, 1.3 to 5.5; p = 0.006) and 4.3 fold (relative risk, 4.3; 95% confidence interval, 1.7 to 11.0; p = 0.002) respectively. Between limb imbalance in strength of greater than 10% did not increase the risk of future HSI. Univariate analysis did not reveal a significantly greater relative risk for future HSI in athletes who had sustained a lower limb injury of any kind within the last 12 months. Logistic regression revealed interactions between both athlete age and history of HSI with eccentric hamstring strength, whereby the likelihood of future HSI in older athletes or athletes with a history of HSI was reduced if an athlete had high levels of eccentric strength. Conclusion Low levels of eccentric hamstring strength increased the risk of future HSI. Interaction effects suggest that the additional risk of future HSI associated with advancing age or previous injury was mitigated by higher levels of eccentric hamstring strength.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Hamstring strain injuries (HSIs) are the most prevalent injury in a number of sports, and while anterior cruciate ligament (ACL) injuries are less common, they are far more severe and have long-term implications, such as an increased risk of developing osteoarthritis later in life. Given the high incidence and severity of these injuries, they are key targets of injury preventive programs in elite sport. Evidence has shown that a previous severe knee injury (including ACL injury) increases the risk of HSI; however, whether the functional deficits that occur after HSI result in an increased risk of ACL injury has yet to be considered. In this clinical commentary, we present evidence that suggests that the link between previous HSI and increased risk of ACL injury requires further investigation by drawing parallels between deficits in hamstring function after HSI and in women athletes, who are more prone to ACL injury than men athletes. Comparisons between the neuromuscular function of the male and female hamstring has shown that women display lower hamstring-to-quadriceps strength ratios during isokinetic knee flexion and extension, increased activation of the quadriceps compared with the hamstrings during a stop-jump landing task, a greater time required to reach maximal isokinetic hamstring torque, and lower integrated myoelectrical hamstring activity during a sidestep cutting maneuver. Somewhat similarly, in athletes with a history of HSI, the previously injured limb, compared with the uninjured limb, displays lower eccentric knee flexor strength, a lower hamstrings-to-quadriceps strength ratio, lower voluntary myoelectrical activity during maximal knee flexor eccentric contraction, a lower knee flexor eccentric rate of torque development, and lower voluntary myoelectrical activity during the initial portion of eccentric contraction. Given that the medial and lateral hamstrings have different actions at the knee joint in the coronal plane, which hamstring head is previously injured might also be expected to influence the likelihood of future ACL. Whether the deficits in function after HSI, as seen in laboratory-based studies, translate to deficits in hamstring function during typical injurious tasks for ACL injury has yet to be determined but should be a consideration for future work.