4 resultados para HL7

em Queensland University of Technology - ePrints Archive


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper proposes a security architecture for the basic cross indexing systems emerging as foundational structures in current health information systems. In these systems unique identifiers are issued to healthcare providers and consumers. In most cases, such numbering schemes are national in scope and must therefore necessarily be used via an indexing system to identify records contained in pre-existing local, regional or national health information systems. Most large scale electronic health record systems envisage that such correlation between national healthcare identifiers and pre-existing identifiers will be performed by some centrally administered cross referencing, or index system. This paper is concerned with the security architecture for such indexing servers and the manner in which they interface with pre-existing health systems (including both workstations and servers). The paper proposes two required structures to achieve the goal of a national scale, and secure exchange of electronic health information, including: (a) the employment of high trust computer systems to perform an indexing function, and (b) the development and deployment of an appropriate high trust interface module, a Healthcare Interface Processor (HIP), to be integrated into the connected workstations or servers of healthcare service providers. This proposed architecture is specifically oriented toward requirements identified in the Connectivity Architecture for Australia’s e-health scheme as outlined by NEHTA and the national e-health strategy released by the Australian Health Ministers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Health information sharing has become a vital part of modern healthcare delivery. E-health technologies provide efficient and effective ways of sharing medical information, but give rise to issues that neither the medical professional nor the consumers have control over. Information security and patient privacy are key impediments that hinder sharing information as sensitive as health information. Health information interoperability is another issue which hinders the adoption of available e health technologies. In this paper we propose a solution for these problems in terms of information accountability, the HL7 interoperability standard and social networks for manipulating personal health records.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective: To develop a system for the automatic classification of pathology reports for Cancer Registry notifications. Method: A two pass approach is proposed to classify whether pathology reports are cancer notifiable or not. The first pass queries pathology HL7 messages for known report types that are received by the Queensland Cancer Registry (QCR), while the second pass aims to analyse the free text reports and identify those that are cancer notifiable. Cancer Registry business rules, natural language processing and symbolic reasoning using the SNOMED CT ontology were adopted in the system. Results: The system was developed on a corpus of 500 histology and cytology reports (with 47% notifiable reports) and evaluated on an independent set of 479 reports (with 52% notifiable reports). Results show that the system can reliably classify cancer notifiable reports with a sensitivity, specificity, and positive predicted value (PPV) of 0.99, 0.95, and 0.95, respectively for the development set, and 0.98, 0.96, and 0.96 for the evaluation set. High sensitivity can be achieved at a slight expense in specificity and PPV. Conclusion: The system demonstrates how medical free-text processing enables the classification of cancer notifiable pathology reports with high reliability for potential use by Cancer Registries and pathology laboratories.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aims Pathology notification for a Cancer Registry is regarded as the most valid information for the confirmation of a diagnosis of cancer. In view of the importance of pathology data, an automatic medical text analysis system (Medtex) is being developed to perform electronic Cancer Registry data extraction and coding of important clinical information embedded within pathology reports. Methods The system automatically scans HL7 messages received from a Queensland pathology information system and analyses the reports for terms and concepts relevant to a cancer notification. A multitude of data items for cancer notification such as primary site, histological type, stage, and other synoptic data are classified by the system. The underlying extraction and classification technology is based on SNOMED CT1 2. The Queensland Cancer Registry business rules3 and International Classification of Diseases – Oncology – Version 34 have been incorporated. Results The cancer notification services show that the classification of notifiable reports can be achieved with sensitivities of 98% and specificities of 96%5, while the coding of cancer notification items such as basis of diagnosis, histological type and grade, primary site and laterality can be extracted with an overall accuracy of 80%6. In the case of lung cancer staging, the automated stages produced were accurate enough for the purposes of population level research and indicative staging prior to multi-disciplinary team meetings2 7. Medtex also allows for detailed tumour stream synoptic reporting8. Conclusions Medtex demonstrates how medical free-text processing could enable the automation of some Cancer Registry processes. Over 70% of Cancer Registry coding resources are devoted to information acquisition. The development of a clinical decision support system to unlock information from medical free-text could significantly reduce costs arising from duplicated processes and enable improved decision support, enhancing efficiency and timeliness of cancer information for Cancer Registries.