131 resultados para Gulf Region
em Queensland University of Technology - ePrints Archive
Resumo:
Cenozoic extension in western Mexico has been divided into two episodes separated by the change from convergence to oblique divergence at the plate boundary. The Gulf Extensional Province is thought to have started once subduction ended at ~12.5 Ma whereas early extension is classified as Basin and Range. Mid-Miocene volcanism of the Comondú group has been considered as a subduction-related arc, whereas post ~12.5 Ma volcanism would be extension-related. Our new integration of the continental onshore and offshore geology of the south-east Gulf region, backed by tens of Ar-Ar and U-Pb ages and geochemical studies, document an early-mid Miocene rifting and extension-related bimodal to andesitic magmatism prior to subduction termination. Between ~21 and 11 Ma a system of NNW-SSE high-angle extensional faults rifted the western side of the Sierra Madre Occidental (SMO) ignimbrite plateau. In Nayarit, rhyolitic domes and some basalts were emplaced along this extensional belt at 18-17 Ma. These rocks show strong antecrystic inheritance but an absence of Mesozoic and older xenocrysts, suggesting a genesis in the mid-upper crust triggered by extension-induced basaltic influx. In Sinaloa, large grabens were floored by huge dome complexes at ~21-17 Ma and filled by continental sediments with interlayered basalts dated at 15 Ma. Mid-Miocene volcanism, including the largely volcaniclastic Comondú strata in Baja California, was thus emplaced in rift basins and appears associated to decompression melting rather than subduction. Along the coast, flat-lying basaltic lava flows dated at 11-10 Ma are exposed just above the present sea level. Here crustal thickness is 25-20 Km, almost half that in the core of the SMO, implying significant lithosphere stretching before ~11 Ma. This mafic pulse, with relatively high Ti but still clear Nb-Ta negative spikes, may be related to the detachment of the lower part of the subducted slab, allowing asthenosphere to flow into parts of the mantle previously fluxed by subduction fluids. Very uniform OIB-like lavas appear in late Pliocene and Pleistocene, only 18 m.y. after the onset of rifting and ~9 m.y. after the end of subduction. Our study shows that rifting began much earlier than Late Miocene and progressively overwhelmed subduction in generating magmatism.
Resumo:
Although Basin and Range style extension affected several areas of western Mexico since the Late Eocene, extension in the Gulf of California region (the Gulf Extensional Province GEP) is thought to have started as subduction waned and ended at ~14 12.5 Ma. A general consensus also exists in considering the mid Miocene Comondú group as a suprasubduction volcanic arc. Our new integration of the geology of the south east Gulf region, backed by 43 new Ar Ar and U Pb mineral ages and geochemical studies, document a widespread phase of extension in the southern GEP between latest Oligocene and Early Miocene that subsequently focused in the region of the future Gulf in the Middle Miocene. Upper Oligocene to Lower Miocene rocks across the southern Sierra Madre Occidental (SMO)(northern Nayarit and southern Sinaloa) were affected by major ~N S to NNW striking normal faults prior to ~21 Ma. Then, between ~21 and 11 Ma, a system of NNW-SSE high angle extensional faults continued extending the southwestern side of the SMO. Rhyolitic domes, shallow intrusive bodies, and lesser basalts were emplaced along this extensional belt at 20-17 Ma. In northern Sinaloa, large grabens were floored by huge dome complexes at ~21-17 Ma and filled by continental sediments with interlayered basalts dated at 15-14 Ma, a setting and timing very similar to Sonora. Early to Middle Miocene volcanism, including the largely volcaniclastic Comondú strata in Baja California Sur, was thus emplaced in rift basins and was likely associated to decompression melting of upper mantle (inducing crustal partial melting) rather than to fluxing by fluids from the young subducting plate. Along the Nayarit and Sinaloa coast, flatlying basaltic lava flows dated at 11-10 Ma are exposed just above the present sea level. Here, crustal thickness is almost half that in the unextended core of the SMO, implying significant lithosphere stretching before ~11 Ma. Our study shows that rifting began much earlier than Late Miocene and provided a fundamental control on the style and composition of volcanism from at least 30 Ma. We envision a sustained period of lithospheric stretching and magmatism during which the pace and breadth of extension changed at ~20-18 Ma to be narrower and likely more rapid, and again at ~12.5 Ma, when the kinematics of rifting became more oblique.
Resumo:
Natural resource management planning in the Northern Gulf region of Queensland is concerned with ‘how [natural assets] and community aspirations can be protected and enhanced to provide the Northern Gulf community with the economic, social and environmental means to meet the continuing growth of the region in an ecological and economically sustainable way’ (McDonald & Dawson 2004). In the Etheridge Shire, located in the tropical savanna of the Northern Gulf region, two of the activities that influence the balance between economic growth and long-term sustainable development are: 1. the land-use decisions people in the Shire make with regards to their own enterprises. 2. their decisions to engage in civically-minded activities aimed at improving conditions in the region. Land-use decision and engagement in community development activities were chosen for detailed analysis because they are activities for which policies can be devised to improve economic and sustainable development outcomes. Changing the formal and informal rules that guide and govern these two different kinds of decisions that people can make in the Etheridge Shire – the decision to improve one’s own situation and the decision to improve the situation for others in the community – may expand the set of available options for people in the Shire to achieve their goals and aspirations. Identifying appropriate and effective changes in rules requires, first, an understanding of the ‘action arena’, in this case comprised of a diversity of ‘participants’ from both within and outside the Etheridge Shire, and secondly knowledge of ‘action situations’ (land-use decisions and engagement in community development activities) in which stakeholders are involved and/or have a stake. These discussions are presented in sections 4.1.1.1 and 4.1.1.2.
Resumo:
Although Basin and Range–style extension affected large areas of western Mexico after the Late Eocene, most consider that extension in the Gulf of California region began as subduction waned and ended ca. 14–12.5 Ma. A general consensus also exists in considering Early and Middle Miocene volcanism of the Sierra Madre Occidental and Comondú Group as subduction related, whereas volcanism after ca. 12.5 Ma is extension related. Here we present a new regional geologic study of the eastern Gulf of California margin in the states of Nayarit and Sinaloa, Mexico, backed by 43 new Ar-Ar and U-Pb mineral ages, and geochemical data that document an earlier widespread phase of extension. This extension across the southern and central Gulf Extensional Province began between Late Oligocene and Early Miocene time, but was focused in the region of the future Gulf of California in the Middle Miocene. Late Oligocene to Early Miocene rocks across northern Nayarit and southern Sinaloa were affected by major approximately north-south– to north-northwest– striking normal faults prior to ca. 21 Ma. Between ca. 21 and 11 Ma, a system of north-northwest–south-southeast high angle extensional faults continued extending the southwestern side of the Sierra Madre Occidental. Rhyolitic domes, shallow intrusive bodies, and lesser basalts were emplaced along this extensional belt at 20–17 Ma. Rhyolitic rocks, in particular the domes and lavas, often show strong antecrystic inheritance but only a few Mesozoic or older xenocrysts, suggesting silicic magma generation in the mid-upper crust triggered by an extension induced basaltic infl ux. In northern Sinaloa, large grabens were occupied by huge volcanic dome complexes ca. 21–17 Ma and filled by continental sediments with interlayered basalts dated as 15–14 Ma, a stratigraphy and timing very similar to those found in central Sonora (northeastern Gulf of California margin). Early to Middle Miocene volcanism occurred thus in rift basins, and was likely associated with decompression melting of upper mantle (inducing crustal partial melting) rather than with fluxing by fluids from the young and slow subducting microplates. Along the eastern side of the Gulf of California coast, from Farallón de San Ignacio island offshore Los Mochis, Sinaloa, to San Blas, Nayarit, a strike distance of >700 km, flat lying basaltic lavas dated as ca. 11.5–10 Ma are exposed just above the present sea level. Here crustal thickness is almost half that in the unextended core of the adjacent Sierra Madre Occidental, implying signifi cant lithosphere stretching before ca. 11 Ma. This mafic pulse, with subdued Nb-Ta negative spikes, may be related to the detachment of the lower part of the subducted slab, allowing an upward asthenospheric flow into an upper mantle previously modified by fluid fluxes related to past subduction. Widespread eruption of very uniform oceanic island basalt–like lavas occurred by the late Pliocene and Pleistocene, only 20 m.y. after the onset of rifting and ~9 m.y. after the end of subduction, implying that preexisting subduction-modified mantle had now become isolated from melt source regions. Our study shows that rifting across the southern-central Gulf Extensional Province began much earlier than the Late Miocene and provided a fundamental control on the style and composition of volcanism from at least 30 Ma. We envision a sustained period of lithospheric stretching and magmatism during which the pace and breadth of extension changed ca. 20–18 Ma to be narrower, and again after ca. 12.5 Ma, when the kinematics of rifting became more oblique.
Resumo:
A 2400 year record of environmental change is reported from a wetland on Bentinck Island in the southern Gulf of Carpentaria, northern Australia. Three phases of wetland development are identified, with a protected coastal setting from ca. 2400 to 500 years ago, transitioning into an estuarine mangrove forest from ca. 500 years ago to the 1940s, and finally to a freshwater swamp over the past +60 years. This sequence reflects the influence of falling sea-levels, development of a coastal dune barrier system, prograding shorelines, and an extreme storm (cyclone) event. In addition, there is clear evidence of the impacts that human abandonment and resettlement have on the island's fire regimes and vegetation. A dramatic increase in burning and vegetation thickening was observed after the cessation of traditional Indigenous Kaiadilt fire management practices in the 1940s, and was then reversed when people returned to the island in the 1980s. In terms of the longer context for human occupation of the South Wellesley Archipelago, it is apparent that the mangrove phase provided a stable and productive environment that was conducive for human settlement of this region over the past 1000 years.
Resumo:
In this study we examined the impact of weather variability and tides on the transmission of Barmah Forest virus (BFV) disease and developed a weather-based forecasting model for BFV disease in the Gladstone region, Australia. We used seasonal autoregressive integrated moving-average (SARIMA) models to determine the contribution of weather variables to BFV transmission after the time-series data of response and explanatory variables were made stationary through seasonal differencing. We obtained data on the monthly counts of BFV cases, weather variables (e.g., mean minimum and maximum temperature, total rainfall, and mean relative humidity), high and low tides, and the population size in the Gladstone region between January 1992 and December 2001 from the Queensland Department of Health, Australian Bureau of Meteorology, Queensland Department of Transport, and Australian Bureau of Statistics, respectively. The SARIMA model shows that the 5-month moving average of minimum temperature (β = 0.15, p-value < 0.001) was statistically significantly and positively associated with BFV disease, whereas high tide in the current month (β = −1.03, p-value = 0.04) was statistically significantly and inversely associated with it. However, no significant association was found for other variables. These results may be applied to forecast the occurrence of BFV disease and to use public health resources in BFV control and prevention.
Resumo:
The United Arab Emirates (UAE) is part of the geographic region known as the Middle East. With a land mass of 82,000 square kilometres, predominantly desert and mountains it is bordered by Oman, Saudi Arabia and the Arabian Gulf. The UAE is strategically located due to its proximity to other oil rich Middle Eastern countries such as Kuwait, Iraq, Iran, and Saudi Arabia. The UAE was formed from a federation of seven emirates (Abu Dhabi, Dubai, Sharjah, Ras Al Khaimah, Ajman, Fujuriah, and Um Al Quain) in December 1971 (Ras Al Khaimah did not join the federation until 1972) (Heard-bey, 2004, 370). Abu Dhabi is the political capital, and the richest emirate; while Dubai is the commercial centre. The majority of the population of the various Emirates live along the coast line as sources of fresh water often heavily influenced the site of different settlements. Unlike some near neighbours (Iran and Iraq) the UAE has not undergone any significant political instability since it was formed in 1971. Due to this early British influences the UAE has had very strong political and economic ties with first Britain, and, more recently, the United States of America (Rugh, 2007). Until the economic production of oil in the early 1960’s the different Emirates had survived on a mixture of primary industry (dates), farming (goats and camels), pearling and subsidies from Britain (Davidson 2005, 3; Hvit, 2007, 565) Along with near neighbours Kuwait, Bahrain, Oman, Qatar and Saudi Arabia, the UAE is part of the Gulf Cooperation Council (GCC), a trading bloc. (Hellyer, 2001, 166-168).
Resumo:
In the region of self-organized criticality (SOC) interdependency between multi-agent system components exists and slight changes in near-neighbor interactions can break the balance of equally poised options leading to transitions in system order. In this region, frequency of events of differing magnitudes exhibits a power law distribution. The aim of this paper was to investigate whether a power law distribution characterized attacker-defender interactions in team sports. For this purpose we observed attacker and defender in a dyadic sub-phase of rugby union near the try line. Videogrammetry was used to capture players’ motion over time as player locations were digitized. Power laws were calculated for the rate of change of players’ relative position. Data revealed that three emergent patterns from dyadic system interactions (i.e., try; unsuccessful tackle; effective tackle) displayed a power law distribution. Results suggested that pattern forming dynamics dyads in rugby union exhibited SOC. It was concluded that rugby union dyads evolve in SOC regions suggesting that players’ decisions and actions are governed by local interactions rules.
Resumo:
The study reported here, constitutes a full review of the major geological events that have influenced the morphological development of the southeast Queensland region. Most importantly, it provides evidence that the region’s physiography continues to be geologically ‘active’ and although earthquakes are presently few and of low magnitude, many past events and tectonic regimes continue to be strongly influential over drainage, morphology and topography. Southeast Queensland is typified by highland terrain of metasedimentary and igneous rocks that are parallel and close to younger, lowland coastal terrain. The region is currently situated in a passive margin tectonic setting that is now under compressive stress, although in the past, the region was subject to alternating extensional and compressive regimes. As part of the investigation, the effects of many past geological events upon landscape morphology have been assessed at multiple scales using features such as the location and orientation of drainage channels, topography, faults, fractures, scarps, cleavage, volcanic centres and deposits, and recent earthquake activity. A number of hypotheses for local geological evolution are proposed and discussed. This study has also utilised a geographic information system (GIS) approach that successfully amalgamates the various types and scales of datasets used. A new method of stream ordination has been developed and is used to compare the orientation of channels of similar orders with rock fabric, in a topologically controlled approach that other ordering systems are unable to achieve. Stream pattern analysis has been performed and the results provide evidence that many drainage systems in southeast Queensland are controlled by known geological structures and by past geological events. The results conclude that drainage at a fine scale is controlled by cleavage, joints and faults, and at a broader scale, large river valleys, such as those of the Brisbane River and North Pine River, closely follow the location of faults. These rivers appear to have become entrenched by differential weathering along these planes of weakness. Significantly, stream pattern analysis has also identified some ‘anomalous’ drainage that suggests the orientations of these watercourses are geologically controlled, but by unknown causes. To the north of Brisbane, a ‘coastal drainage divide’ has been recognized and is described here. The divide crosses several lithological units of different age, continues parallel to the coast and prevents drainage from the highlands flowing directly to the coast for its entire length. Diversion of low order streams away from the divide may be evidence that a more recent process may be the driving force. Although there is no conclusive evidence for this at present, it is postulated that the divide may have been generated by uplift or doming associated with mid-Cenozoic volcanism or a blind thrust at depth. Also north of Brisbane, on the D’Aguilar Range, an elevated valley (the ‘Kilcoy Gap’) has been identified that may have once drained towards the coast and now displays reversed drainage that may have resulted from uplift along the coastal drainage divide and of the D’Aguilar blocks. An assessment of the distribution and intensity of recent earthquakes in the region indicates that activity may be associated with ancient faults. However, recent movement on these faults during these events would have been unlikely, given that earthquakes in the region are characteristically of low magnitude. There is, however, evidence that compressive stress is building and being released periodically and ancient faults may be a likely place for this stress to be released. The relationship between ancient fault systems and the Tweed Shield Volcano has also been discussed and it is suggested here that the volcanic activity was associated with renewed faulting on the Great Moreton Fault System during the Cenozoic. The geomorphology and drainage patterns of southeast Queensland have been compared with expected morphological characteristics found at passive and other tectonic settings, both in Australia and globally. Of note are the comparisons with the East Brazilian Highlands, the Gulf of Mexico and the Blue Ridge Escarpment, for example. In conclusion, the results of the study clearly show that, although the region is described as a passive margin, its complex, past geological history and present compressive stress regime provide a more intricate and varied landscape than would be expected along typical passive continental margins. The literature review provides background to the subject and discusses previous work and methods, whilst the findings are presented in three peer-reviewed, published papers. The methods, hypotheses, suggestions and evidence are discussed at length in the final chapter.