217 resultados para Green Wall
em Queensland University of Technology - ePrints Archive
Resumo:
Hong Kong is a densely populated city suffering badly from the urban heat island effect. Green wall offers a means of ameliorating the situation but there are doubts over its suitability in Hong Kong’s unique environment. In this paper, we look at the potential for green walls in Hong Kong first by summarising some of the Chinese green walling systems and associated vegetation in use, then by an introduction to three existing green walls in Hong Kong, and finally through a small experiment aimed at identifying the likely main effects of green walled housing. The results indicate that green walling in Hong Kong is likely to provide enhanced internal house environment in terms of warm weather temperature reduction, stabilisation and damping, with direct energy savings in air-conditioning and indirect district benefits of reduced heat island effect and carbon emissions. The green walling insulation properties also suggest the possibility of warmer homes in winter and/or energy savings in mechanical heating provision.
Resumo:
Hong Kong is a densely populated city suffering badly from the urban heat island effect. Green wall offers a means of ameliorating the situation but there are doubts over its suitability in Hong Kong’s unique environment. In this paper, we look at the potential for green walls in Hong Kong first by summarizing some of the Chinese green walling systems and associated vegetation in use, then by an introduction to three existing green walls in Hong Kong, and finally through a small experiment aimed at identifying the likely main effects of green walled housing. The results indicate that green walling in Hong Kong is likely to provide enhanced internal house environment in terms of warm weather temperature reduction, stabilization and damping, with direct energy savings in air-conditioning and indirect district benefits of reduced heat island effect and carbon emissions. The green walling insulation properties also suggest the possibility of warmer homes in winter and/or energy savings in mechanical heating provision.
Resumo:
As Brisbane grows, it is rapidly becoming akin to any other city in the world with its typical stark grey concrete buildings rather than being characterized by its subtropical element of abundant green vegetation. Living Walls can play a vital role in restoring the loss of this distinct local element of a subtropical city. This paper will start by giving an overview of the traditional methods of greening subtropical cities with the use of urban parks and street trees. Then, by examining a recent heat imaging map of Brisbane, the effect of green cover with the built environment will be shown. With this information from a macro level, this paper will proceed to examine a typical urban block within the Central Business District (CBD) to demonstrate urban densification in relation to greenery in the city. Then, this paper will introduce the new technology where Living Walls have the untapped potential of effectively greening a city where land is scarce and given over to high density development. Living Walls incorporated into building design does not only enhance the subtropical lifestyle that is being lost in modern cities but is also an effective means for addressing climate change. This paper will serve as a preliminary investigation into the effects of incorporating Living Walls into cities. By growing a Living Wall onto buildings, we can be part of an effective design solution for countering global warming and at the same time, Living Walls can return local character to subtropical cities, thereby greening the city as well.
Resumo:
This paper investigates energy saving potential of commercial building by living wall and green façade system using Envelope Thermal Transfer Value (ETTV) equation in Sub-tropical climate of Australia. Energy saving of four commercial buildings was quantified by applying living wall and green façade system to the west facing wall. A field experimental facility, from which temperature data of living wall system was collected, was used to quantify wall temperatures and heat gain under controlled conditions. The experimental parameters were accumulated with extensive data of existing commercial building to quantify energy saving. Based on temperature data of living wall system comprised of Australian native plants, equivalent temperature of living wall system has been computed. Then, shading coefficient of plants in green façade system has been included in mathematical equation and in graphical analysis. To minimize the air-conditioned load of commercial building, therefore to minimize the heat gain of commercial building, an analysis of building heat gain reduction by living wall and green façade system has been performed. Overall, cooling energy performance of commercial building before and after living wall and green façade system application has been examined. The quantified energy saving showed that only living wall system on opaque part of west facing wall can save 8-13 % of cooling energy consumption where as only green façade system on opaque part of west facing wall can save 9.5-18% cooling energy consumption of commercial building. Again, green façade system on fenestration system on west facing wall can save 28-35 % of cooling energy consumption where as combination of both living wall on opaque part of west facing wall and green façade on fenestration system on west facing wall can save 35-40% cooling energy consumption of commercial building in sub-tropical climate of Australia.
Resumo:
This paper investigates cooling energy performance of commercial building before and after green roof and living wall application based on integrated building heat gain model developed from Overall Thermal Transfer Value (OTTV) of building wall and steady state heat transfer process of roof in sub-tropical climate. Using the modelled equation and eQUEST energy simulation tool, commercial building envelope parameters and relevant heat gain parameters have been accumulated to analyse the heat gain and cooling energy consumption of commercial building. Real life commercial building envelope and air-conditioned load data for the sub-tropical climate zone have been collected and compared with the modelled analysis. Relevant temperature data required for living wall and green roof analysis have been collected from experimental setup comprised of both green roof and west facing living wall. Then, Commercial building heat flux and cooling energy performance before and after green roof and living wall application have been scrutinized.
Resumo:
This research examined why university campus development has not fully embraced green technology despite common expectations. Semi-structured interviews and a Delphi Study explored universities’ organisational issues and delivery processes for projects with a sustainability focus. Critical organisational components and their internal relationships were studied, and critical factors for project success identified. A decision-making framework was developed to provide strategic directions for universities to optimise organisational environment and overcome barriers in order to better deliver sustainable projects on campuses.
Resumo:
As the societal awareness on sustainability is gaining momentum worldwide, the higher education sector is expected to take the lead in education, research and the promotion of sustainable development. Universities have the diversity of skills and knowledge to explore new concepts and issues, the academic freedom to offer unbiased observations, and the capacity to engage in experimentation for solutions. There is a global trend that universities have realized and responded to sustainability challenge. By adopting green technologies, buildings on university campuses have the potential to offer highly productive and green environments for a quality learning experience for students, while minimising environmental impacts. Despite the potential benefits and metaphorical link to sustainability, few universities have moved towards implementing Green Roof and Living Wall on campuses widely, which have had more successful applications in commercial and residential buildings. Few past research efforts have examined the fundamental barriers to the implementation of sustainable projects on campuses from organizational level. To address this deficiency, an on-going research project is undertaken by Queensland University of Technology in Australia. The research is aimed at developing a comprehensive framework to facilitate better decision making for the promotion of Green Roof and Living Wall application on campuses. It will explore and highlight organizational factors as well as investigate and emphasize project delivery issues. Also, the critical technical indicators for Green Roof and Living Wall implementation will be identified. The expected outcome of this research has the potential to enhance Green Roof and Living Wall delivery in Australian universities, as a vital step towards realizing sustainability in higher education sectors.
Resumo:
Raman spectroscopic analyses of fragmented wall-painting specimens from a Romano-British villa dating from ca. 200 AD are reported. The predominant pigment is red haematite, to which carbon, chalk and sand have been added to produce colour variations, applied to a typical Roman limewash putty composition. Other pigment colours are identified as white chalk, yellow (goethite), grey (soot/chalk mixture) and violet. The latter pigment is ascribed to caput mortuum, a rare form of haematite, to which kaolinite (possibly from Cornwall) has been added, presumably in an effort to increase the adhesive properties of the pigment to the substratum. This is the first time that kaolinite has been reported in this context and could indicate the successful application of an ancient technology discovered by the Romano-British artists. Supporting evidence for the Raman data is provided by X-ray diffraction and SEM-EDAX analyses of the purple pigment.