280 resultados para Genetic Programming, NPR, Evolutionary Art

em Queensland University of Technology - ePrints Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We introduce a genetic programming (GP) approach for evolving genetic networks that demonstrate desired dynamics when simulated as a discrete stochastic process. Our representation of genetic networks is based on a biochemical reaction model including key elements such as transcription, translation and post-translational modifications. The stochastic, reaction-based GP system is similar but not identical with algorithmic chemistries. We evolved genetic networks with noisy oscillatory dynamics. The results show the practicality of evolving particular dynamics in gene regulatory networks when modelled with intrinsic noise.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The favourable scaffold for bone tissue engineering should have desired characteristic features, such as adequate mechanical strength and three-dimensional open porosity, which guarantee a suitable environment for tissue regeneration. In fact, the design of such complex structures like bone scaffolds is a challenge for investigators. One of the aims is to achieve the best possible mechanical strength-degradation rate ratio. In this paper we attempt to use numerical modelling to evaluate material properties for designing bone tissue engineering scaffold fabricated via the fused deposition modelling technique. For our studies the standard genetic algorithm was used, which is an efficient method of discrete optimization. For the fused deposition modelling scaffold, each individual strut is scrutinized for its role in the architecture and structural support it provides for the scaffold, and its contribution to the overall scaffold was studied. The goal of the study was to create a numerical tool that could help to acquire the desired behaviour of tissue engineered scaffolds and our results showed that this could be achieved efficiently by using different materials for individual struts. To represent a great number of ways in which scaffold mechanical function loss could proceed, the exemplary set of different desirable scaffold stiffness loss function was chosen. © 2012 John Wiley & Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As order dependencies between process tasks can get complex, it is easy to make mistakes in process model design, especially behavioral ones such as deadlocks. Notions such as soundness formalize behavioral errors and tools exist that can identify such errors. However these tools do not provide assistance with the correction of the process models. Error correction can be very challenging as the intentions of the process modeler are not known and there may be many ways in which an error can be corrected. We present a novel technique for automatic error correction in process models based on simulated annealing. Via this technique a number of process model alternatives are identified that resolve one or more errors in the original model. The technique is implemented and validated on a sample of industrial process models. The tests show that at least one sound solution can be found for each input model and that the response times are short.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Genetic research of complex diseases is a challenging, but exciting, area of research. The early development of the research was limited, however, until the completion of the Human Genome and HapMap projects, along with the reduction in the cost of genotyping, which paves the way for understanding the genetic composition of complex diseases. In this thesis, we focus on the statistical methods for two aspects of genetic research: phenotype definition for diseases with complex etiology and methods for identifying potentially associated Single Nucleotide Polymorphisms (SNPs) and SNP-SNP interactions. With regard to phenotype definition for diseases with complex etiology, we firstly investigated the effects of different statistical phenotyping approaches on the subsequent analysis. In light of the findings, and the difficulties in validating the estimated phenotype, we proposed two different methods for reconciling phenotypes of different models using Bayesian model averaging as a coherent mechanism for accounting for model uncertainty. In the second part of the thesis, the focus is turned to the methods for identifying associated SNPs and SNP interactions. We review the use of Bayesian logistic regression with variable selection for SNP identification and extended the model for detecting the interaction effects for population based case-control studies. In this part of study, we also develop a machine learning algorithm to cope with the large scale data analysis, namely modified Logic Regression with Genetic Program (MLR-GEP), which is then compared with the Bayesian model, Random Forests and other variants of logic regression.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose a method for learning specific object representations that can be applied (and reused) in visual detection and identification tasks. A machine learning technique called Cartesian Genetic Programming (CGP) is used to create these models based on a series of images. Our research investigates how manipulation actions might allow for the development of better visual models and therefore better robot vision. This paper describes how visual object representations can be learned and improved by performing object manipulation actions, such as, poke, push and pick-up with a humanoid robot. The improvement can be measured and allows for the robot to select and perform the `right' action, i.e. the action with the best possible improvement of the detector.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although robotics research has seen advances over the last decades robots are still not in widespread use outside industrial applications. Yet a range of proposed scenarios have robots working together, helping and coexisting with humans in daily life. In all these a clear need to deal with a more unstructured, changing environment arises. I herein present a system that aims to overcome the limitations of highly complex robotic systems, in terms of autonomy and adaptation. The main focus of research is to investigate the use of visual feedback for improving reaching and grasping capabilities of complex robots. To facilitate this a combined integration of computer vision and machine learning techniques is employed. From a robot vision point of view the combination of domain knowledge from both imaging processing and machine learning techniques, can expand the capabilities of robots. I present a novel framework called Cartesian Genetic Programming for Image Processing (CGP-IP). CGP-IP can be trained to detect objects in the incoming camera streams and successfully demonstrated on many different problem domains. The approach requires only a few training images (it was tested with 5 to 10 images per experiment) is fast, scalable and robust yet requires very small training sets. Additionally, it can generate human readable programs that can be further customized and tuned. While CGP-IP is a supervised-learning technique, I show an integration on the iCub, that allows for the autonomous learning of object detection and identification. Finally this dissertation includes two proof-of-concepts that integrate the motion and action sides. First, reactive reaching and grasping is shown. It allows the robot to avoid obstacles detected in the visual stream, while reaching for the intended target object. Furthermore the integration enables us to use the robot in non-static environments, i.e. the reaching is adapted on-the- fly from the visual feedback received, e.g. when an obstacle is moved into the trajectory. The second integration highlights the capabilities of these frameworks, by improving the visual detection by performing object manipulation actions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Previous work by Professor John Frazer on Evolutionary Architecture provides a basis for the development of a system evolving architectural envelopes in a generic and abstract manner. Recent research by the authors has focused on the implementation of a virtual environment for the automatic generation and exploration of complex forms and architectural envelopes based on solid modelling techniques and the integration of evolutionary algorithms, enhanced computational and mathematical models. Abstract data types are introduced for genotypes in a genetic algorithm order to develop complex models using generative and evolutionary computing techniques. Multi-objective optimisation techniques are employed for defining the fitness function in the evaluation process.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A composite SaaS (Software as a Service) is a software that is comprised of several software components and data components. The composite SaaS placement problem is to determine where each of the components should be deployed in a cloud computing environment such that the performance of the composite SaaS is optimal. From the computational point of view, the composite SaaS placement problem is a large-scale combinatorial optimization problem. Thus, an Iterative Cooperative Co-evolutionary Genetic Algorithm (ICCGA) was proposed. The ICCGA can find reasonable quality of solutions. However, its computation time is noticeably slow. Aiming at improving the computation time, we propose an unsynchronized Parallel Cooperative Co-evolutionary Genetic Algorithm (PCCGA) in this paper. Experimental results have shown that the PCCGA not only has quicker computation time, but also generates better quality of solutions than the ICCGA.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Galapagos archipelago is characterized by a high degree of endemism across many taxa, linked to the archpelago's oceanic origin and distance from other colonizing land masses. A population of ~ 500 American Flamingos (Phoenicopterus ruber) resides in Galapagos, which is thought to share an historical origin with the American Flamingo currently found in the Caribbean region. Genetic and phenotypic parameters in American Flamingos from Galapagos and from the Caribbean were investigated. Microsatellite and microchondrial DNA markers data showed that the American Flamingo population in Galapagos differs genetically from that in the Caribbean. American Flamingos in Galapagos form a clade which differs by a single common nucleotide substitution from American Flamingos in the Caribbean. The genetic differentiation is also evident from nuclear DNA in that microsatellite data reveal a number of private alleles for the American Flamingo in Galapagos. Analysis of skeletal measurements showed that American Flamingos in Galapagos are smaller than those in the Caribbean primarily due to shorter tarsus length, and differences in body shape sexual dimorphism. American Flamingo eggs from Galapagos have smaller linear dimensions and volumes than those from the Caribbean. The findings are consistent with reproductive isolation of American Flamingo population in Galapagos.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Live migration of multiple Virtual Machines (VMs) has become an integral management activity in data centers for power saving, load balancing and system maintenance. While state-of-the-art live migration techniques focus on the improvement of migration performance of an independent single VM, only a little has been investigated to the case of live migration of multiple interacting VMs. Live migration is mostly influenced by the network bandwidth and arbitrarily migrating a VM which has data inter-dependencies with other VMs may increase the bandwidth consumption and adversely affect the performances of subsequent migrations. In this paper, we propose a Random Key Genetic Algorithm (RKGA) that efficiently schedules the migration of a given set of VMs accounting both inter-VM dependency and data center communication network. The experimental results show that the RKGA can schedule the migration of multiple VMs with significantly shorter total migration time and total downtime compared to a heuristic algorithm.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This thesis articulates and examines public engagement programming in an emerging, non¬-traditional site. As a practice-led research project, the creative work proposes a site responsive, engagement centric, agile model for curatorial programming that developed out of the dynamic, new media/digital, curatorial practice at QUT's Creative Industries Precinct. The model and its accompanying exegetical framework, Curating in Uncharted Territories, offer a theoretically informed approach to programming, delivering and reporting for curatorial practices in a non¬-traditional sites of public engagement. The research provides the foundation for full development of the model and the basis for further research.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Context: Osteoporosis is a common, highly heritable condition that causes substantial morbidity and mortality, the etiopathogenesis of which is poorly understood. Genetic studies are making increasingly rapid progress in identifying the genes involved. Evidence Acquisition and Synthesis: In this review, we will summarize the current understanding of the genetics of osteoporosis based on publications from PubMed from the year 1987 onward. Conclusions: Most genes involved in osteoporosis identified to date encode components of known pathways involved in bone synthesis or resorption, but as the field progresses, new pathways are being identified. Only a small proportion of the total genetic variation involved in osteoporosis has been identified, and new approaches will be required to identify most of the remaining genes.