163 resultados para Generalized Gaussian-noise

em Queensland University of Technology - ePrints Archive


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The main goal of this research is to design an efficient compression al~ gorithm for fingerprint images. The wavelet transform technique is the principal tool used to reduce interpixel redundancies and to obtain a parsimonious representation for these images. A specific fixed decomposition structure is designed to be used by the wavelet packet in order to save on the computation, transmission, and storage costs. This decomposition structure is based on analysis of information packing performance of several decompositions, two-dimensional power spectral density, effect of each frequency band on the reconstructed image, and the human visual sensitivities. This fixed structure is found to provide the "most" suitable representation for fingerprints, according to the chosen criteria. Different compression techniques are used for different subbands, based on their observed statistics. The decision is based on the effect of each subband on the reconstructed image according to the mean square criteria as well as the sensitivities in human vision. To design an efficient quantization algorithm, a precise model for distribution of the wavelet coefficients is developed. The model is based on the generalized Gaussian distribution. A least squares algorithm on a nonlinear function of the distribution model shape parameter is formulated to estimate the model parameters. A noise shaping bit allocation procedure is then used to assign the bit rate among subbands. To obtain high compression ratios, vector quantization is used. In this work, the lattice vector quantization (LVQ) is chosen because of its superior performance over other types of vector quantizers. The structure of a lattice quantizer is determined by its parameters known as truncation level and scaling factor. In lattice-based compression algorithms reported in the literature the lattice structure is commonly predetermined leading to a nonoptimized quantization approach. In this research, a new technique for determining the lattice parameters is proposed. In the lattice structure design, no assumption about the lattice parameters is made and no training and multi-quantizing is required. The design is based on minimizing the quantization distortion by adapting to the statistical characteristics of the source in each subimage. 11 Abstract Abstract Since LVQ is a multidimensional generalization of uniform quantizers, it produces minimum distortion for inputs with uniform distributions. In order to take advantage of the properties of LVQ and its fast implementation, while considering the i.i.d. nonuniform distribution of wavelet coefficients, the piecewise-uniform pyramid LVQ algorithm is proposed. The proposed algorithm quantizes almost all of source vectors without the need to project these on the lattice outermost shell, while it properly maintains a small codebook size. It also resolves the wedge region problem commonly encountered with sharply distributed random sources. These represent some of the drawbacks of the algorithm proposed by Barlaud [26). The proposed algorithm handles all types of lattices, not only the cubic lattices, as opposed to the algorithms developed by Fischer [29) and Jeong [42). Furthermore, no training and multiquantizing (to determine lattice parameters) is required, as opposed to Powell's algorithm [78). For coefficients with high-frequency content, the positive-negative mean algorithm is proposed to improve the resolution of reconstructed images. For coefficients with low-frequency content, a lossless predictive compression scheme is used to preserve the quality of reconstructed images. A method to reduce bit requirements of necessary side information is also introduced. Lossless entropy coding techniques are subsequently used to remove coding redundancy. The algorithms result in high quality reconstructed images with better compression ratios than other available algorithms. To evaluate the proposed algorithms their objective and subjective performance comparisons with other available techniques are presented. The quality of the reconstructed images is important for a reliable identification. Enhancement and feature extraction on the reconstructed images are also investigated in this research. A structural-based feature extraction algorithm is proposed in which the unique properties of fingerprint textures are used to enhance the images and improve the fidelity of their characteristic features. The ridges are extracted from enhanced grey-level foreground areas based on the local ridge dominant directions. The proposed ridge extraction algorithm, properly preserves the natural shape of grey-level ridges as well as precise locations of the features, as opposed to the ridge extraction algorithm in [81). Furthermore, it is fast and operates only on foreground regions, as opposed to the adaptive floating average thresholding process in [68). Spurious features are subsequently eliminated using the proposed post-processing scheme.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper presents results on the robustness of higher-order spectral features to Gaussian, Rayleigh, and uniform distributed noise. Based on cluster plots and accuracy results for various signal to noise conditions, the higher-order spectral features are shown to be better than moment invariant features.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Multicarrier code division multiple access (MC-CDMA) is a very promising candidate for the multiple access scheme in fourth generation wireless communi- cation systems. During asynchronous transmission, multiple access interference (MAI) is a major challenge for MC-CDMA systems and significantly affects their performance. The main objectives of this thesis are to analyze the MAI in asyn- chronous MC-CDMA, and to develop robust techniques to reduce the MAI effect. Focus is first on the statistical analysis of MAI in asynchronous MC-CDMA. A new statistical model of MAI is developed. In the new model, the derivation of MAI can be applied to different distributions of timing offset, and the MAI power is modelled as a Gamma distributed random variable. By applying the new statistical model of MAI, a new computer simulation model is proposed. This model is based on the modelling of a multiuser system as a single user system followed by an additive noise component representing the MAI, which enables the new simulation model to significantly reduce the computation load during computer simulations. MAI reduction using slow frequency hopping (SFH) technique is the topic of the second part of the thesis. Two subsystems are considered. The first sub- system involves subcarrier frequency hopping as a group, which is referred to as GSFH/MC-CDMA. In the second subsystem, the condition of group hopping is dropped, resulting in a more general system, namely individual subcarrier frequency hopping MC-CDMA (ISFH/MC-CDMA). This research found that with the introduction of SFH, both of GSFH/MC-CDMA and ISFH/MC-CDMA sys- tems generate less MAI power than the basic MC-CDMA system during asyn- chronous transmission. Because of this, both SFH systems are shown to outper- form MC-CDMA in terms of BER. This improvement, however, is at the expense of spectral widening. In the third part of this thesis, base station polarization diversity, as another MAI reduction technique, is introduced to asynchronous MC-CDMA. The com- bined system is referred to as Pol/MC-CDMA. In this part a new optimum com- bining technique namely maximal signal-to-MAI ratio combining (MSMAIRC) is proposed to combine the signals in two base station antennas. With the applica- tion of MSMAIRC and in the absents of additive white Gaussian noise (AWGN), the resulting signal-to-MAI ratio (SMAIR) is not only maximized but also in- dependent of cross polarization discrimination (XPD) and antenna angle. In the case when AWGN is present, the performance of MSMAIRC is still affected by the XPD and antenna angle, but to a much lesser degree than the traditional maximal ratio combining (MRC). Furthermore, this research found that the BER performance for Pol/MC-CDMA can be further improved by changing the angle between the two receiving antennas. Hence the optimum antenna angles for both MSMAIRC and MRC are derived and their effects on the BER performance are compared. With the derived optimum antenna angle, the Pol/MC-CDMA system is able to obtain the lowest BER for a given XPD.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This thesis deals with the problem of the instantaneous frequency (IF) estimation of sinusoidal signals. This topic plays significant role in signal processing and communications. Depending on the type of the signal, two major approaches are considered. For IF estimation of single-tone or digitally-modulated sinusoidal signals (like frequency shift keying signals) the approach of digital phase-locked loops (DPLLs) is considered, and this is Part-I of this thesis. For FM signals the approach of time-frequency analysis is considered, and this is Part-II of the thesis. In part-I we have utilized sinusoidal DPLLs with non-uniform sampling scheme as this type is widely used in communication systems. The digital tanlock loop (DTL) has introduced significant advantages over other existing DPLLs. In the last 10 years many efforts have been made to improve DTL performance. However, this loop and all of its modifications utilizes Hilbert transformer (HT) to produce a signal-independent 90-degree phase-shifted version of the input signal. Hilbert transformer can be realized approximately using a finite impulse response (FIR) digital filter. This realization introduces further complexity in the loop in addition to approximations and frequency limitations on the input signal. We have tried to avoid practical difficulties associated with the conventional tanlock scheme while keeping its advantages. A time-delay is utilized in the tanlock scheme of DTL to produce a signal-dependent phase shift. This gave rise to the time-delay digital tanlock loop (TDTL). Fixed point theorems are used to analyze the behavior of the new loop. As such TDTL combines the two major approaches in DPLLs: the non-linear approach of sinusoidal DPLL based on fixed point analysis, and the linear tanlock approach based on the arctan phase detection. TDTL preserves the main advantages of the DTL despite its reduced structure. An application of TDTL in FSK demodulation is also considered. This idea of replacing HT by a time-delay may be of interest in other signal processing systems. Hence we have analyzed and compared the behaviors of the HT and the time-delay in the presence of additive Gaussian noise. Based on the above analysis, the behavior of the first and second-order TDTLs has been analyzed in additive Gaussian noise. Since DPLLs need time for locking, they are normally not efficient in tracking the continuously changing frequencies of non-stationary signals, i.e. signals with time-varying spectra. Nonstationary signals are of importance in synthetic and real life applications. An example is the frequency-modulated (FM) signals widely used in communication systems. Part-II of this thesis is dedicated for the IF estimation of non-stationary signals. For such signals the classical spectral techniques break down, due to the time-varying nature of their spectra, and more advanced techniques should be utilized. For the purpose of instantaneous frequency estimation of non-stationary signals there are two major approaches: parametric and non-parametric. We chose the non-parametric approach which is based on time-frequency analysis. This approach is computationally less expensive and more effective in dealing with multicomponent signals, which are the main aim of this part of the thesis. A time-frequency distribution (TFD) of a signal is a two-dimensional transformation of the signal to the time-frequency domain. Multicomponent signals can be identified by multiple energy peaks in the time-frequency domain. Many real life and synthetic signals are of multicomponent nature and there is little in the literature concerning IF estimation of such signals. This is why we have concentrated on multicomponent signals in Part-H. An adaptive algorithm for IF estimation using the quadratic time-frequency distributions has been analyzed. A class of time-frequency distributions that are more suitable for this purpose has been proposed. The kernels of this class are time-only or one-dimensional, rather than the time-lag (two-dimensional) kernels. Hence this class has been named as the T -class. If the parameters of these TFDs are properly chosen, they are more efficient than the existing fixed-kernel TFDs in terms of resolution (energy concentration around the IF) and artifacts reduction. The T-distributions has been used in the IF adaptive algorithm and proved to be efficient in tracking rapidly changing frequencies. They also enables direct amplitude estimation for the components of a multicomponent

Relevância:

80.00% 80.00%

Publicador:

Resumo:

An approach to pattern recognition using invariant parameters based on higher-order spectra is presented. In particular, bispectral invariants are used to classify one-dimensional shapes. The bispectrum, which is translation invariant, is integrated along straight lines passing through the origin in bifrequency space. The phase of the integrated bispectrum is shown to be scale- and amplification-invariant. A minimal set of these invariants is selected as the feature vector for pattern classification. Pattern recognition using higher-order spectral invariants is fast, suited for parallel implementation, and works for signals corrupted by Gaussian noise. The classification technique is shown to distinguish two similar but different bolts given their one-dimensional profiles

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A new approach to pattern recognition using invariant parameters based on higher order spectra is presented. In particular, invariant parameters derived from the bispectrum are used to classify one-dimensional shapes. The bispectrum, which is translation invariant, is integrated along straight lines passing through the origin in bifrequency space. The phase of the integrated bispectrum is shown to be scale and amplification invariant, as well. A minimal set of these invariants is selected as the feature vector for pattern classification, and a minimum distance classifier using a statistical distance measure is used to classify test patterns. The classification technique is shown to distinguish two similar, but different bolts given their one-dimensional profiles. Pattern recognition using higher order spectral invariants is fast, suited for parallel implementation, and has high immunity to additive Gaussian noise. Simulation results show very high classification accuracy, even for low signal-to-noise ratios.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper develops maximum likelihood (ML) estimation schemes for finite-state semi-Markov chains in white Gaussian noise. We assume that the semi-Markov chain is characterised by transition probabilities of known parametric from with unknown parameters. We reformulate this hidden semi-Markov model (HSM) problem in the scalar case as a two-vector homogeneous hidden Markov model (HMM) problem in which the state consist of the signal augmented by the time to last transition. With this reformulation we apply the expectation Maximumisation (EM ) algorithm to obtain ML estimates of the transition probabilities parameters, Markov state levels and noise variance. To demonstrate our proposed schemes, motivated by neuro-biological applications, we use a damped sinusoidal parameterised function for the transition probabilities.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper conditional hidden Markov model (HMM) filters and conditional Kalman filters (KF) are coupled together to improve demodulation of differential encoded signals in noisy fading channels. We present an indicator matrix representation for differential encoded signals and the optimal HMM filter for demodulation. The filter requires O(N3) calculations per time iteration, where N is the number of message symbols. Decision feedback equalisation is investigated via coupling the optimal HMM filter for estimating the message, conditioned on estimates of the channel parameters, and a KF for estimating the channel states, conditioned on soft information message estimates. The particular differential encoding scheme examined in this paper is differential phase shift keying. However, the techniques developed can be extended to other forms of differential modulation. The channel model we use allows for multiplicative channel distortions and additive white Gaussian noise. Simulation studies are also presented.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Most of the existing algorithms for approximate Bayesian computation (ABC) assume that it is feasible to simulate pseudo-data from the model at each iteration. However, the computational cost of these simulations can be prohibitive for high dimensional data. An important example is the Potts model, which is commonly used in image analysis. Images encountered in real world applications can have millions of pixels, therefore scalability is a major concern. We apply ABC with a synthetic likelihood to the hidden Potts model with additive Gaussian noise. Using a pre-processing step, we fit a binding function to model the relationship between the model parameters and the synthetic likelihood parameters. Our numerical experiments demonstrate that the precomputed binding function dramatically improves the scalability of ABC, reducing the average runtime required for model fitting from 71 hours to only 7 minutes. We also illustrate the method by estimating the smoothing parameter for remotely sensed satellite imagery. Without precomputation, Bayesian inference is impractical for datasets of that scale.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Initial attempts to obtain lattice based signatures were closely related to reducing a vector modulo the fundamental parallelepiped of a secret basis (like GGH [9], or NTRUSign [12]). This approach leaked some information on the secret, namely the shape of the parallelepiped, which has been exploited on practical attacks [24]. NTRUSign was an extremely efficient scheme, and thus there has been a noticeable interest on developing countermeasures to the attacks, but with little success [6]. In [8] Gentry, Peikert and Vaikuntanathan proposed a randomized version of Babai’s nearest plane algorithm such that the distribution of a reduced vector modulo a secret parallelepiped only depended on the size of the base used. Using this algorithm and generating large, close to uniform, public keys they managed to get provably secure GGH-like lattice-based signatures. Recently, Stehlé and Steinfeld obtained a provably secure scheme very close to NTRUSign [26] (from a theoretical point of view). In this paper we present an alternative approach to seal the leak of NTRUSign. Instead of modifying the lattices and algorithms used, we do a classic leaky NTRUSign signature and hide it with gaussian noise using techniques present in Lyubashevky’s signatures. Our main contributions are thus a set of strong NTRUSign parameters, obtained by taking into account latest known attacks against the scheme, a statistical way to hide the leaky NTRU signature so that this particular instantiation of CVP-based signature scheme becomes zero-knowledge and secure against forgeries, based on the worst-case hardness of the O~(N1.5)-Shortest Independent Vector Problem over NTRU lattices. Finally, we give a set of concrete parameters to gauge the efficiency of the obtained signature scheme.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The delay stochastic simulation algorithm (DSSA) by Barrio et al. [Plos Comput. Biol.2, 117–E (2006)] was developed to simulate delayed processes in cell biology in the presence of intrinsic noise, that is, when there are small-to-moderate numbers of certain key molecules present in a chemical reaction system. These delayed processes can faithfully represent complex interactions and mechanisms that imply a number of spatiotemporal processes often not explicitly modeled such as transcription and translation, basic in the modeling of cell signaling pathways. However, for systems with widely varying reaction rate constants or large numbers of molecules, the simulation time steps of both the stochastic simulation algorithm (SSA) and the DSSA can become very small causing considerable computational overheads. In order to overcome the limit of small step sizes, various τ-leap strategies have been suggested for improving computational performance of the SSA. In this paper, we present a binomial τ- DSSA method that extends the τ-leap idea to the delay setting and avoids drawing insufficient numbers of reactions, a common shortcoming of existing binomial τ-leap methods that becomes evident when dealing with complex chemical interactions. The resulting inaccuracies are most evident in the delayed case, even when considering reaction products as potential reactants within the same time step in which they are produced. Moreover, we extend the framework to account for multicellular systems with different degrees of intercellular communication. We apply these ideas to two important genetic regulatory models, namely, the hes1 gene, implicated as a molecular clock, and a Her1/Her 7 model for coupled oscillating cells.