7 resultados para Gearbox

em Queensland University of Technology - ePrints Archive


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents a continuous isotropic spherical omnidirectional drive mechanism that is efficient in its mechanical simplicity and use of volume. Spherical omnidirectional mechanisms allow isotropic motion, although many are limited from achieving true isotropic motion by practical mechanical design considerations. The mechanism presented in this paper uses a single motor to drive a point on the great circle of the sphere parallel to the ground plane, and does not require a gearbox. Three mechanisms located 120 degrees apart provide a stable drive platform for a mobile robot. Results show the omnidirectional ability of the robot and demonstrate the performance of the spherical mechanism compared to a popular commercial omnidirectional wheel over edges of varying heights and gaps of varying widths.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Shaft-mounted gearboxes are widely used in industry. The torque arm that holds the reactive torque on the housing of the gearbox, if properly positioned creates the reactive force that lifts the gearbox and unloads the bearings of the output shaft. The shortcoming of these torque arms is that if the gearbox is reversed the direction of the reactive force on the torque arm changes to opposite and added to the weight of the gearbox overloads the bearings shortening their operating life. In this paper, a new patented design of torque arms that develop a controlled lifting force and counteract the weight of the gearbox regardless of the direction of the output shaft rotation is described. Several mathematical models of the conventional and new torque arms were developed and verified experimentally on a specially built test rig that enables modelling of the radial compliance of the gearbox bearings and elastic elements of the torque arms. Comparison showed a good agreement between theoretical and experimental results.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Estimating and predicting degradation processes of engineering assets is crucial for reducing the cost and insuring the productivity of enterprises. Assisted by modern condition monitoring (CM) technologies, most asset degradation processes can be revealed by various degradation indicators extracted from CM data. Maintenance strategies developed using these degradation indicators (i.e. condition-based maintenance) are more cost-effective, because unnecessary maintenance activities are avoided when an asset is still in a decent health state. A practical difficulty in condition-based maintenance (CBM) is that degradation indicators extracted from CM data can only partially reveal asset health states in most situations. Underestimating this uncertainty in relationships between degradation indicators and health states can cause excessive false alarms or failures without pre-alarms. The state space model provides an efficient approach to describe a degradation process using these indicators that can only partially reveal health states. However, existing state space models that describe asset degradation processes largely depend on assumptions such as, discrete time, discrete state, linearity, and Gaussianity. The discrete time assumption requires that failures and inspections only happen at fixed intervals. The discrete state assumption entails discretising continuous degradation indicators, which requires expert knowledge and often introduces additional errors. The linear and Gaussian assumptions are not consistent with nonlinear and irreversible degradation processes in most engineering assets. This research proposes a Gamma-based state space model that does not have discrete time, discrete state, linear and Gaussian assumptions to model partially observable degradation processes. Monte Carlo-based algorithms are developed to estimate model parameters and asset remaining useful lives. In addition, this research also develops a continuous state partially observable semi-Markov decision process (POSMDP) to model a degradation process that follows the Gamma-based state space model and is under various maintenance strategies. Optimal maintenance strategies are obtained by solving the POSMDP. Simulation studies through the MATLAB are performed; case studies using the data from an accelerated life test of a gearbox and a liquefied natural gas industry are also conducted. The results show that the proposed Monte Carlo-based EM algorithm can estimate model parameters accurately. The results also show that the proposed Gamma-based state space model have better fitness result than linear and Gaussian state space models when used to process monotonically increasing degradation data in the accelerated life test of a gear box. Furthermore, both simulation studies and case studies show that the prediction algorithm based on the Gamma-based state space model can identify the mean value and confidence interval of asset remaining useful lives accurately. In addition, the simulation study shows that the proposed maintenance strategy optimisation method based on the POSMDP is more flexible than that assumes a predetermined strategy structure and uses the renewal theory. Moreover, the simulation study also shows that the proposed maintenance optimisation method can obtain more cost-effective strategies than a recently published maintenance strategy optimisation method by optimising the next maintenance activity and the waiting time till the next maintenance activity simultaneously.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Asset health inspections can produce two types of indicators: (1) direct indicators (e.g. the thickness of a brake pad, and the crack depth on a gear) which directly relate to a failure mechanism; and (2) indirect indicators (e.g. the indicators extracted from vibration signals and oil analysis data) which can only partially reveal a failure mechanism. While direct indicators enable more precise references to asset health condition, they are often more difficult to obtain than indirect indicators. The state space model provides an efficient approach to estimating direct indicators by using indirect indicators. However, existing state space models to estimate direct indicators largely depend on assumptions such as, discrete time, discrete state, linearity, and Gaussianity. The discrete time assumption requires fixed inspection intervals. The discrete state assumption entails discretising continuous degradation indicators, which often introduces additional errors. The linear and Gaussian assumptions are not consistent with nonlinear and irreversible degradation processes in most engineering assets. This paper proposes a state space model without these assumptions. Monte Carlo-based algorithms are developed to estimate the model parameters and the remaining useful life. These algorithms are evaluated for performance using numerical simulations through MATLAB. The result shows that both the parameters and the remaining useful life are estimated accurately. Finally, the new state space model is used to process vibration and crack depth data from an accelerated test of a gearbox. During this application, the new state space model shows a better fitness result than the state space model with linear and Gaussian assumption.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the field of diagnostics of rolling element bearings, the development of sophisticated techniques, such as Spectral Kurtosis and 2nd Order Cyclostationarity, extended the capability of expert users to identify not only the presence, but also the location of the damage in the bearing. Most of the signal-analysis methods, as the ones previously mentioned, result in a spectrum-like diagram that presents line frequencies or peaks in the neighbourhood of some theoretical characteristic frequencies, in case of damage. These frequencies depend only on damage position, bearing geometry and rotational speed. The major improvement in this field would be the development of algorithms with high degree of automation. This paper aims at this important objective, by discussing for the first time how these peaks can draw away from the theoretical expected frequencies as a function of different working conditions, i.e. speed, torque and lubrication. After providing a brief description of the peak-patterns associated with each type of damage, this paper shows the typical magnitudes of the deviations from the theoretical expected frequencies. The last part of the study presents some remarks about increasing the reliability of the automatic algorithm. The research is based on experimental data obtained by using artificially damaged bearings installed in a gearbox.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Slippage in the contact roller-races has always played a central role in the field of diagnostics of rolling element bearings. Due to this phenomenon, vibrations triggered by a localized damage are not strictly periodic and therefore not detectable by means of common spectral functions as power spectral density or discrete Fourier transform. Due to the strong second order cyclostationary component, characterizing these signals, techniques such as cyclic coherence, its integrated form and square envelope spectrum have proven to be effective in a wide range of applications. An expert user can easily identify a damage and its location within the bearing components by looking for particular patterns of peaks in the output of the selected cyclostationary tool. These peaks will be found in the neighborhood of specific frequencies, that can be calculated in advance as functions of the geometrical features of the bearing itself. Unfortunately the non-periodicity of the vibration signal is not the only consequence of the slippage: often it also involves a displacement of the damage characteristic peaks from the theoretically expected frequencies. This issue becomes particularly important in the attempt to develop highly automated algorithms for bearing damage recognition, and, in order to correctly set thresholds and tolerances, a quantitative description of the magnitude of the above mentioned deviations is needed. This paper is aimed at identifying the dependency of the deviations on the different operating conditions. This has been possible thanks to an extended experimental activity performed on a full scale bearing test rig, able to reproduce realistically the operating and environmental conditions typical of an industrial high power electric motor and gearbox. The importance of load will be investigated in detail for different bearing damages. Finally some guidelines on how to cope with such deviations will be given, accordingly to the expertise obtained in the experimental activity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The preventive maintenance of traction equipment for Very High Speed Trains (VHST) nowadays is becoming very expensive owing to the high complexity and quality of these components that require high reliability. An efficient maintenance approach like the Condition-Based Maintenance (CBM) should be implemented to reduce the costs. For this purpose, an experimental full-scale test rig for the CBM of VHST traction equipment has been designed to investigate in detail failures in the main mechanical components of system, i.e. motor, bearings and gearbox. The paper describes the main characteristics of this unique test rig, able to reproduce accurately the train operating conditions, including the relative movements of the motor, the gearbox and the wheel axle. Gearbox, bearing seats and motor are equipped by accelerometers, thermocouples, torque meter and other sensors in different positions. The testing results give important information about the most suitable sensor position and type to be installed for each component and show the effectiveness of the techniques used for the signal analysis in order to identify faults of the gearbox and motor bearings.