32 resultados para Gas chromatography-mass spectrometry
em Queensland University of Technology - ePrints Archive
Resumo:
Saliva is a crucial biofluid for oral health and is also of increasing importance as a non-invasive source of disease biomarkers. Salivary alpha-amylase is an abundant protein in saliva, and changes in amylase expression have been previously associated with a variety of diseases and conditions. Salivary alpha-amylase is subject to a high diversity of post-translational modifications, including physiological proteolysis in the oral cavity. Here we developed methodology for rapid sample preparation and non-targeted LC-ESI-MS/MS analysis of saliva from healthy subjects and observed an extreme diversity of alpha-amylase proteolytic isoforms. Our results emphasize the importance of consideration of post-translational events such as proteolysis in proteomic studies, biomarker discovery and validation, particularly in saliva. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Batch, column and field lysimeter studies have been conducted to evaluate the concept of codisposal of retort water with Rundle (Queensland, Australia) waste shales. The batch studies indicated that degradation of a significant proportion of the total organic load occurs if the mixture is seeded with soil or compost. These results are compared with those from laboratory column studies and from the field lysimeter at the Rundle site. G.c.-m.s. analysis of some of the eluants indicated that significant degradation of the base-neutral fraction occurs even if no soil seed is added, and that degradation of this fraction was higher under anaerobic conditions.
Resumo:
House dust is a heterogeneous matrix, which contains a number of biological materials and particulate matter gathered from several sources. It is the accumulation of a number of semi-volatile and non-volatile contaminants. The contaminants are trapped and preserved. Therefore, house dust can be viewed as an archive of both the indoor and outdoor air pollution. There is evidence to show that on average, people tend to stay indoors most of the time and this increases exposure to house dust. The aims of this investigation were to: " assess the levels of Polycyclic Aromatic Hydrocarbons (PAHs), elements and pesticides in the indoor environment of the Brisbane area; " identify and characterise the possible sources of elemental constituents (inorganic elements), PAHs and pesticides by means of Positive Matrix Factorisation (PMF); and " establish the correlations between the levels of indoor air pollutants (PAHs, elements and pesticides) with the external and internal characteristics or attributes of the buildings and indoor activities by means of multivariate data analysis techniques. The dust samples were collected during the period of 2005-2007 from homes located in different suburbs of Brisbane, Ipswich and Toowoomba, in South East Queensland, Australia. A vacuum cleaner fitted with a paper bag was used as a sampler for collecting the house dust. A survey questionnaire was filled by the house residents which contained information about the indoor and outdoor characteristics of their residences. House dust samples were analysed for three different pollutants: Pesticides, Elements and PAHs. The analyses were carried-out for samples of particle size less than 250 µm. The chemical analyses for both pesticides and PAHs were performed using a Gas Chromatography Mass Spectrometry (GC-MS), while elemental analysis was carried-out by using Inductively-Coupled Plasma-Mass Spectroscopy (ICP-MS). The data was subjected to multivariate data analysis techniques such as multi-criteria decision-making procedures, Preference Ranking Organisation Method for Enrichment Evaluations (PROMETHEE), coupled with Geometrical Analysis for Interactive Aid (GAIA) in order to rank the samples and to examine data display. This study showed that compared to the results from previous works, which were carried-out in Australia and overseas, the concentrations of pollutants in house dusts in Brisbane and the surrounding areas were relatively very high. The results of this work also showed significant correlations between some of the physical parameters (types of building material, floor level, distance from industrial areas and major road, and smoking) and the concentrations of pollutants. Types of building materials and the age of houses were found to be two of the primary factors that affect the concentrations of pesticides and elements in house dust. The concentrations of these two types of pollutant appear to be higher in old houses (timber houses) than in the brick ones. In contrast, the concentrations of PAHs were noticed to be higher in brick houses than in the timber ones. Other factors such as floor level, and distance from the main street and industrial area, also affected the concentrations of pollutants in the house dust samples. To apportion the sources and to understand mechanisms of pollutants, Positive Matrix Factorisation (PMF) receptor model was applied. The results showed that there were significant correlations between the degree of concentration of contaminants in house dust and the physical characteristics of houses, such as the age and the type of the house, the distance from the main road and industrial areas, and smoking. Sources of pollutants were identified. For PAHs, the sources were cooking activities, vehicle emissions, smoking, oil fumes, natural gas combustion and traces of diesel exhaust emissions; for pesticides the sources were application of pesticides for controlling termites in buildings and fences, treating indoor furniture and in gardens for controlling pests attacking horticultural and ornamental plants; for elements the sources were soil, cooking, smoking, paints, pesticides, combustion of motor fuels, residual fuel oil, motor vehicle emissions, wearing down of brake linings and industrial activities.
Resumo:
Atherosclerotic cardiovascular disease remains the leading cause of morbidity and mortality in industrialized societies. The lack of metabolite biomarkers has impeded the clinical diagnosis of atherosclerosis so far. In this study, stable atherosclerosis patients (n=16) and age- and sex-matched non-atherosclerosis healthy subjects (n=28) were recruited from the local community (Harbin, P. R. China). The plasma was collected from each study subject and was subjected to metabolomics analysis by GC/MS. Pattern recognition analyses (principal components analysis, orthogonal partial least-squares discriminate analysis, and hierarchical clustering analysis) commonly demonstrated plasma metabolome, which was significantly different from atherosclerotic and non-atherosclerotic subjects. The development of atherosclerosis-induced metabolic perturbations of fatty acids, such as palmitate, stearate, and 1-monolinoleoylglycerol, was confirmed consistent with previous publication, showing that palmitate significantly contributes to atherosclerosis development via targeting apoptosis and inflammation pathways. Altogether, this study demonstrated that the development of atherosclerosis directly perturbed fatty acid metabolism, especially that of palmitate, which was confirmed as a phenotypic biomarker for clinical diagnosis of atherosclerosis.
Resumo:
Isolated and purified organosolv eucalyptus wood lignin was depolymerized at different temperatures with and without mesostructured silica catalysts (i.e., SBA-15, MCM-41, ZrO2-SBA-15 and ZrO2-MCM-41). It was found that at 300 oC for 1 h with a solid/liquid ratio of 0.0175/1 (w/v), the SBA-15 catalyst with high acidity gave the highest syringol yield of 23.0% in a methanol/water mixture (50/50, wt/wt). Doping with ZrO2 over these catalysts did not increase syringol yield, but increased the total amount of solid residue. Gas chromatography-mass spectrometry (GC-MS) also identified other main phenolic compounds such as 1-(4-hydroxy-3,5-dimethoxyphenyl)-ethanone, 1,2-benzenediol, and 4-hydroxy-3,5-dimethoxy-benzaldehyde. Analysis of the lignin residues with Fourier transform-Infrared spectroscopy (FT-IR) indicated decreases in the absorption bands intensities of OH group, C-O stretching of syringyl ring and aromatic C-H deformation of syringol unit, and an increase in band intensities associated with the guaiacyl ring, confirming the type of products formed.
Resumo:
High Intensity Exercise (HIE) stimulates greater physiological remodeling when compared to workload matched low-moderate intensity exercise. This study utilized an untargeted metabolomics approach to examine the metabolic perturbations that occur following two workload matched supramaximal low volume HIE trials. In a randomized order, 7 untrained males completed two exercise protocols separated by one week; 1) HIE150%: 30 x 20s cycling at 150% VO2peak, 40s passive rest; 2) HIE300%: 30 x 10s cycling at 300% VO2peak, 50 s passive rest. Total exercise duration was 30 minutes for both trials. Blood samples were taken at rest, during and immediately following exercise and at 60 minutes post exercise. Gas chromatography-mass spectrometry (GC-MS) analysis of plasma identified 43 known metabolites of which 3 demonstrated significant fold changes (HIE300% compared to the HIE150% value) during exercise, 14 post exercise and 23 at the end of the recovery period. Significant changes in plasma metabolites relating to lipid metabolism [fatty acids: dodecanoate (p=0.042), hexadecanoate (p=0.001), octadecanoate (p=0.001)], total cholesterol (p=0.001), and glycolysis [lactate (p=0.018)] were observed following exercise and during the recovery period. The HIE300% protocol elicited greater metabolic changes relating to lipid metabolism and glycolysis when compared to HIE150% protocol. These changes were more pronounced throughout the recovery period rather than during the exercise bout itself. Data from the current study demonstrate the use of metabolomics to monitor intensity-dependent changes in multiple metabolic pathways following exercise. The small sample size indicates a need for further studies in a larger sample cohort to validate these findings.
Resumo:
Global climate change, increasingly erratic weather and a burgeoning global population are significant threats to the sustainability of future crop production. There is an urgent need for the development of robust measures that enable crops to withstand the uncertainty of climate change whilst still producing maximum yields. Resurrection plants possess the unique ability to withstand desiccation for prolonged periods, can be restored upon watering and represent great potential for the development of stress tolerant crops. Here, we describe the remarkable stress characteristics of Tripogon loliiformis, an uncharacterised resurrection grass and close relative of the economically important cereals, rice, sorghum, and maize. We show that T. loliiformis survives extreme environmental stress by implementing autophagy to prevent Programmed Cell Death. Notably, we identified a novel role for trehalose in the regulation of autophagy in T.loliiformis. Transcriptome, Gas Chromatography Mass Spectrometry, immunoblotting and confocal microscopy analyses directly linked the accumulation of trehalose with the onset of autophagy in dehydrating and desiccated T. loliiformis shoots. These results were supported in vitro with the observation of autophagosomes in trehalose treated T. loliiformis leaves; autophagosomes were not detected in untreated samples. Presumably, once induced, autophagy promotes desiccation tolerance in T.loliiformis , by removal of cellular toxins to suppress programmed cell death and the recycling of nutrients to delay the onset of senescence. These findings illustrate how resurrection plants manipulate sugar metabolism to promote desiccation tolerance and may provide candidate genes that are potentially useful for the development of stress tolerant crops.
Resumo:
This paper was designed to study metabonomic characters of the hepatotoxicity induced by alcohol and the intervention effects of Yin Chen Hao Tang (YCHT), a classic traditional Chinese medicine formula for treatment of jaundice and liver disorders in China. Urinary samples from control, alcohol- and YCHT-treated rats were analyzed by ultra-performance liquid chromatography/electrospray ionization quadruple time-of-flight mass spectrometry (UPLC/ESI-QTOF-MS) in positive ionization mode. The total ion chromatograms obtained from the control, alcohol- and YCHT-treated rats were easily distinguishable using a multivariate statistical analysis method such as the principal components analysis (PCA). The greatest difference in metabolic profiling was observed from alcohol-treated rats compared with the control and YCHT-treated rats. The positive ions m/z 664.3126 (9.00 min) was elevated in urine of alcohol-treated rats, whereas, ions m/z 155.3547 (10.96 min) and 708.2932 (9.01 min) were at a lower concentration compared with that in urine of control rats, however, these ions did not indicate a statistical difference between control rats and YCHT-treated rats. The ion m/z 664.3126 was found to correspond to ceramide (d18:1/25:0), providing further support for an involvement of the sphingomyelin signaling pathway in alcohol hepatotoxicity and the intervention effects of YCHT.
Resumo:
Scoparone (6,7-dimethoxycoumarin) is known to have a wide range of pharmacological properties. In this study, a rapid and validated ultra-performance liquid chromatography/electrospray ionization quadruple time-of-flight mass spectrometry (UPLC/ESI-QTof-MS) method was developed to investigate the metabolism of scoparone in rat for the first time. The new method reduced the sample handling and analytical time by three- to six-fold, and the detection limit by five- to 1000-fold, compared to published methods. Far more metabolites were detected and identified compared to published data, which were preliminarily identified as scopoletin, isoscopoletin, isofraxidin, and fraxidin, respectively, when subjected to tandem mass spectrometry analyses. It is found that the metabolic trajectory of scoparone in rat focused on phase I metabolism which is obviously different from published results, and revealed a wide range of pharmacological properties of scoparone partly attributed to the bioactivities of its metabolites.
Resumo:
Liuwei Dihuang Wan (LWD), a classic Chinese medicinal formulae, has been used to improve or restore declined functions related to aging and geriatric diseases, such as impaired mobility, vision, hearing, cognition and memory. It has attracted increasingly much attention as one of the most popular and valuable herbal medicines. However, the systematic analysis of the chemical constituents of LDW is difficult and thus has not been well established. In this paper, a rapid, sensitive and reliable ultra-performance liquid chromatography with electrospray ionization quadrupole time-of-flight high-definition mass spectrometry (UPLC-ESI-Q-TOF-MS) method with automated MetaboLynx analysis in positive and negative ion mode was established to characterize the chemical constituents of LDW. The analysis was performed on a Waters UPLCTM HSS T3 using a gradient elution system. MS/MS fragmentation behavior was proposed for aiding the structural identification of the components. Under the optimized conditions, a total of 50 peaks were tentatively characterized by comparing the retention time and MS data. It is concluded that a rapid and robust platform based on UPLC-ESI-Q-TOF-MS has been successfully developed for globally identifying multiple-constituents of traditional Chinese medicine prescriptions. This is the first report on systematic analysis of the chemical constituents of LDW. This article is protected by copyright. All rights reserved.
Resumo:
The detailed characterization of protein N-glycosylation is very demanding given the many different glycoforms and structural isomers that can exist on glycoproteins. Here we report a fast and sensitive method for the extensive structure elucidation of reducing-end labeled N-glycan mixtures using a combination of capillary normal-phase HPLC coupled off-line to matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) and TOF/TOF-MS/MS. Using this method, isobaric N-glycans released from honey bee phospholipase A2 and Arabidopsis thaliana glycoproteins were separated by normal-phase chromatography and subsequently identified by key fragment ions in the MALDI-TOF/TOF tandem mass spectra. In addition, linkage and branching information were provided by abundant cross-ring and "elimination" fragment ions in the MALDI-CID spectra that gave extensive structural information. Furthermore, the fragmentation characteristics of N-glycans reductively aminated with 2-aminobenzoic acid and 2-aminobenzamide were compared. The identification of N-glycans containing 3-linked core fucose was facilitated by distinctive ions present only in the MALDI-CID spectra of 2-aminobenzoic acid-labeled oligosaccharides. To our knowledge, this is the first MS/MS-based technique that allows confident identification of N-glycans containing 3-linked core fucose, which is a major allergenic determinant on insect and plant glycoproteins.
Resumo:
The purpose of this review is to showcase the present capabilities of ambient sampling and ionisation technologies for the analysis of polymers and polymer additives by mass spectrometry (MS) while simultaneously highlighting their advantages and limitations in a critical fashion. To qualify as an ambient ionisation technique, the method must be able to probe the surface of solid or liquid samples while operating in an open environment, allowing a variety of sample sizes, shapes, and substrate materials to be analysed. The main sections of this review will be guided by the underlying principle governing the desorption/extraction step of the analysis; liquid extraction, laser ablation, or thermal desorption, and the major component investigated, either the polymer itself or exogenous compounds (additives and contaminants) present within or on the polymer substrate. The review will conclude by summarising some of the challenges these technologies still face and possible directions that would further enhance the utility of ambient ionisation mass spectrometry as a tool for polymer analysis. (C) 2013 Elsevier B. V. All rights reserved.