8 resultados para FxLMS

em Queensland University of Technology - ePrints Archive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several approaches have been introduced in literature for active noise control (ANC) systems. Since FxLMS algorithm appears to be the best choice as a controller filter, researchers tend to improve performance of ANC systems by enhancing and modifying this algorithm. This paper proposes a new version of FxLMS algorithm. In many ANC applications an online secondary path modelling method using a white noise as a training signal is required to ensure convergence of the system. This paper also proposes a new approach for online secondary path modelling in feedfoward ANC systems. The proposed algorithm stops injection of the white noise at the optimum point and reactivate the injection during the operation, if needed, to maintain performance of the system. Benefiting new version of FxLMS algorithm and not continually injection of white noise makes the system more desirable and improves the noise attenuation performance. Comparative simulation results indicate effectiveness of the proposed approach.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Several approaches have been introduced in the literature for active noise control (ANC) systems. Since the filtered-x least-mean-square (FxLMS) algorithm appears to be the best choice as a controller filter, researchers tend to improve performance of ANC systems by enhancing and modifying this algorithm. This paper proposes a new version of the FxLMS algorithm, as a first novelty. In many ANC applications, an on-line secondary path modeling method using white noise as a training signal is required to ensure convergence of the system. As a second novelty, this paper proposes a new approach for on-line secondary path modeling on the basis of a new variable-step-size (VSS) LMS algorithm in feed forward ANC systems. The proposed algorithm is designed so that the noise injection is stopped at the optimum point when the modeling accuracy is sufficient. In this approach, a sudden change in the secondary path during operation makes the algorithm reactivate injection of the white noise to re-adjust the secondary path estimate. Comparative simulation results shown in this paper indicate the effectiveness of the proposed approach in reducing both narrow-band and broad-band noise. In addition, the proposed ANC system is robust against sudden changes of the secondary path model.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper proposes a self-tuning feedforward active noise control (ANC) system with online secondary path modeling. The step-size parameters of the controller and modeling filters have crucial rule on the system performance. In literature, these parameters are adjusted by trial-and-error. In other words, they are manually initialized before system starting, which require performing extensive experiments to ensure the convergence of the system. Hence there is no guarantee that the system could perform well under different situations. In the proposed method, the appropriate values for the step-sizes are obtained automatically. Computer simulation results indicate the effectiveness of the proposed method.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In practical cases for active noise control (ANC), the secondary path has usually a time varying behavior. For these cases, an online secondary path modeling method that uses a white noise as a training signal is required to ensure convergence of the system. The modeling accuracy and the convergence rate are increased when a white noise with a larger variance is used. However, the larger variance increases the residual noise, which decreases performance of the system and additionally causes instability problem to feedback structures. A sudden change in the secondary path leads to divergence of the online secondary path modeling filter. To overcome these problems, this paper proposes a new approach for online secondary path modeling in feedback ANC systems. The proposed algorithm uses the advantages of white noise with larger variance to model the secondary path, but the injection is stopped at the optimum point to increase performance of the algorithm and to prevent the instability effect of the white noise. In this approach, instead of continuous injection of the white noise, a sudden change in secondary path during the operation makes the algorithm to reactivate injection of the white noise to correct the secondary path estimation. In addition, the proposed method models the secondary path without the need of using off-line estimation of the secondary path. Considering the above features increases the convergence rate and modeling accuracy, which results in a high system performance. Computer simulation results shown in this paper indicate effectiveness of the proposed method.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper proposes a new method for online secondary path modeling in feedback active noise control (ANC) systems. In practical cases, the secondary path is usually time varying. For these cases, online modeling of secondary path is required to ensure convergence of the system. In literature the secondary path estimation is usually performed offline, prior to online modeling, where in the proposed system there is no need for using offline estimation. The proposed method consists of two steps: a noise controller which is based on an FxLMS algorithm, and a variable step size (VSS) LMS algorithm which is used to adapt the modeling filter with the secondary path. In order to increase performance of the algorithm in a faster convergence and accurate performance, we stop the VSS-LMS algorithm at the optimum point. The results of computer simulation shown in this paper indicate effectiveness of the proposed method.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In many applications of active noise control (ANC), an online secondary path modelling method using a white noise as a training signal is required to ensure convergence of the system. The modelling accuracy and the convergence rate increase when a white noise with larger variance is used, however larger the variance increases the residual noise, which decreases performance of the system. The proposed algorithm uses the advantages of the white noise with larger variance to model the secondary path, but the injection is stopped at the optimum point to increase performance of the system. In this approach, instead of continuous injection of the white noise, a sudden change in secondary path during the operation makes the algorithm to reactivate injection of the white noise to adjust the secondary path estimation. Comparative simulation results shown in this paper indicate effectiveness of the proposed method.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We propose a new active noise control (ANC) technique. The technique has a feedback structure to have a simple configuration in practical implementation. In this approach, the secondary path is modelled online to ensure convergence of the system as the secondary paths are practically time varying or non-linear. The proposed method consists of two steps: a noise controller which is based on a modified FxLMS algorithm, and a new variable step size (VSS) LMS algorithm which is used to adapt the modelling filter with the secondary path. The proposed algorithm stops injection of the white noise at the optimum point and reactivate the injection during the operation, if needed, to maintain performance of the system. Eliminating continuous injection of the white noise increases the performance of the proposed method significantly and makes it more desirable for practical ANC systems. The computer simulations are presented to show the effectiveness of the proposed method.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In many active noise control (ANC) applications, an online secondary path modelling method that uses a white noise as a training signal is required. This paper proposes a new feedback ANC system. Here we modified both the FxLMS and the VSS-LMS algorithms to raised noise attenuation and modelling accuracy for the overall system. The proposed algorithm stops injection of the white noise at the optimum point and reactivate the injection during the operation, if needed, to maintain performance of the system. Preventing continuous injection of the white noise increases the performance of the proposed method significantly and makes it more desirable for practical ANC systems. Computer simulation results shown in this paper indicate effectiveness of the proposed method.