316 resultados para Functional polymorphism
em Queensland University of Technology - ePrints Archive
Resumo:
Migraine is a common neurological disorder with a significant genetic component. Although a number of linkage and association studies have been undertaken, the number and identity of all migraine susceptibility genes has yet to be defined. The existence of dopaminergic hypersensitivity in migraine has been recognised on a pharmacological basis and some studies have reported genetic association between migraine and dopamine-related gene variants. Our laboratory has previously reported association of migraine with a promoter STR marker in the dopamine beta hydroxylase (DBH) gene. In the present study, we analysed two additional DBH markers in two independent migraine case–control cohorts. These two markers are putative functional SNPs, one within the promoter (−1021C→T) and another SNP (+1603C→T) in exon 11 of the DBH gene. The results showed a significant association for allelic and genotypic frequency distribution between the DBH marker in the promoter and migraine in the first (P = 0.004 and P = 0.012, respectively) and the second (P = 0.013 and P = 0.031, respectively) tested cohorts. There was no association observed between either genotype and/or allelic frequencies for the DBH marker located in exon 11 and migraine (P ≥ 0.05). The promoter DBH marker, reported associated with migraine in this study, has been shown to affect up to 52% of plasma DBH activity. Varying DBH activity levels have been postulated to be involved in migraine process with an increase of dopamine, resulting from a lower DBH activity shown positively correlated with migraine severity. It is plausible that the functional promoter variant of DBH may play a role in the migraine disorder.
Resumo:
BACKGROUND: The serotonergic system is thought to play an important role for mediating susceptibility to migraine and depression, which is frequently found comorbid in migraine. The functional polymorphism in the serotonin transporter gene linked polymorphic region (5-HTTLPR/SLC6A4) was previously associated with attack frequency and, thus, possibly with chronification. OBJECTIVE: We hypothesized that patients with the "s" allele have higher attack frequency and, paralleling results in depression research, higher scores of depression. METHODS: Genetic analysis of the SLC6A4 44 bp insertion/deletion polymorphism (5-HTTLPR) was performed in 293 patients with migraine with and without aura. Self-rating questionnaires were used for assessment of depression. RESULTS: Multinomial logistic regression analysis found no evidence for association of the 5-HTTLPR polymorphism with either depression or migraine attack frequency. CONCLUSION: We were not able to demonstrate any influence of the serotonin transporter 5-HTTLPR polymorphism on migraine phenomenology (attack frequency or comorbid depression), thereby excluding this variant to be a common genetic denominator for chronic migraine and depression.
Resumo:
Background: The most common functional single nucleotide polymorphism of the human OPRM1 gene, A118G, has been shown to be associated with interindividual differences in opioid analgesic requirements, particularly with morphine, in patients with acute postoperative pain. The purpose of this study was to examine whether this polymorphism would modulate the morphine and fentanyl pharmacological profile of sensory neurons isolated from a humanized mouse model homozygous for either the 118A or 118G allele. Methods: The coupling of wild-type and mutant μ opioid receptors to voltage-gated Ca channels after exposure to either ligand was examined by employing the whole cell variant of the patch-clamp technique in acutely dissociated trigeminal ganglion neurons. Morphine-mediated antinociception was measured in mice carrying either the 118AA or 118GG allele. RESULTS:: The biophysical parameters (cell size, current density, and peak current amplitude potential) measured from both groups of sensory neurons were not significantly different. In 118GG neurons, morphine was approximately fivefold less potent and 26% less efficacious than that observed in 118AA neurons. On the other hand, the potency and efficacy of fentanyl were similar for both groups of neurons. Morphine-mediated analgesia in 118GG mice was significantly reduced compared with the 118AA mice. Conclusions: This study provides evidence to suggest that the diminished clinical effect observed with morphine in 118G carriers results from an alteration of the receptor's pharmacology in sensory neurons. In addition, the impaired analgesic response with morphine may explain why carriers of this receptor variant have an increased susceptibility to become addicted to opioids. © 2011 the American Society of Anesthesiologists, Inc. Lippincott Williams & Wilkins. Anesthesiology.
Resumo:
KLK15 over-expression is reported to be a significant predictor of reduced progression-free survival and overall survival in ovarian cancer. Our aim was to analyse the KLK15 gene for putative functional single nucleotide polymorphisms (SNPs) and assess the association of these and KLK15 HapMap tag SNPs with ovarian cancer survival. Results In silico analysis was performed to identify KLK15 regulatory elements and to classify potentially functional SNPs in these regions. After SNP validation and identification by DNA sequencing of ovarian cancer cell lines and aggressive ovarian cancer patients, 9 SNPs were shortlisted and genotyped using the Sequenom iPLEX Mass Array platform in a cohort of Australian ovarian cancer patients (N = 319). In the Australian dataset we observed significantly worse survival for the KLK15 rs266851 SNP in a dominant model (Hazard Ratio (HR) 1.42, 95% CI 1.02-1.96). This association was observed in the same direction in two independent datasets, with a combined HR for the three studies of 1.16 (1.00-1.34). This SNP lies 15bp downstream of a novel exon and is predicted to be involved in mRNA splicing. The mutant allele is also predicted to abrogate an HSF-2 binding site. Conclusions We provide evidence of association for the SNP rs266851 with ovarian cancer survival. Our results provide the impetus for downstream functional assays and additional independent validation studies to assess the role of KLK15 regulatory SNPs and KLK15 isoforms with alternative intracellular functional roles in ovarian cancer survival.
Resumo:
Migraine is a neurological disorder that is associated with increased levels of calcitonin gene-related peptide (CGRP) in plasma. CGRP, being one of the mediators of neurogenic inflammation and a phenomenon implicated in the pathogenesis of migraine headache, is thus suggested to have an important role in migraine pathophysiology. Polymorphisms of the CALCA gene have been linked to Parkinson's disease, ovarian cancer and essential hypertension, suggesting a functional role for these polymorphisms. Given the strong evidence linking CGRP and migraine, it is hypothesised that polymorphisms in the CALCA gene may play a role in migraine pathogenesis. Seemingly non functional intronic polymorphisms are capable of disrupting normal RNA processing or introducing a splice site in the transcript. A 16 bp deletion in the first intron of the CALCA gene has been reported to be a good match for the binding site for a transcription factor expressed strongly in neural crest derived cells, AP-2. This deletion also eliminates an intron splicing enhancer (ISE) that may potentially cause exon skipping. This study investigated the role of the 16 bp intronic deletion in the CALCA gene in migraineurs and matched control individuals. Six hundred individuals were genotyped for the deletion by polymerase chain reaction followed by fragment analysis on the 3130 Genetic Analyser. The results of this study showed no significant association between the intronic 16 bp deletion in the CALCA gene and migraine in the tested Australian Caucasian population. However, given the evidence linking CGRP and migraine, further investigation of variants with this gene may be warranted.
Resumo:
microRNAs are small, non-coding RNAs that influence gene expression on a post-transcriptional level. They participate in diverse biological pathways and may act as either tumor suppressor genes or oncogenes. As they may have an effect on thousands of target mRNAs, single-nucleotide polymorphisms in microRNA genes might have major functional consequences, because the microRNA's properties and/or maturation may change. miR-196a has been reported to be aberrantly expressed in breast cancer tissue. Additionally, the SNP rs11614913 in hsa-mir-196a-2 has been found to be associated with breast cancer risk in some studies although not in others. This study evaluated the association between rs11614913 and breast cancer risk in a Caucasian case-control cohort in Queensland, Australia. Results do not support an association of the tested hsa-mir-196a-2 polymorphism with breast cancer susceptibility in this cohort. As there is a discrepancy between our results and previous findings, it is important to assess the role of rs11614913 in breast cancer by further larger studies investigating different ethnic groups.
Resumo:
Migraine is a debilitating neurological disorder, affecting 12% of Caucasian populations. It is well known that migraine has a strong genetic component, although the type and number of genes involved is unclear. Our previous work has investigated dopamine related migraine candidate genes and has reported a significant allelic association with migraine of a microsatellite localised to the promoter region of the dopamine beta-hydroxylase (DBH) gene. The present study performed an association analysis in a larger population of case-controls (275 unrelated Caucasian migraineurs versus 275 controls) examining two different genetic DBH polymorphisms (a functional insertion/deletion promoter and a coding SNP A444G polymorphism). Although no significant association was found for the SNP polymorphism, the results showed a significant association between the insertion/deletion variant and disease (chi(2)=8.92, P=0.011), in particular in migraine with aura (chi(2)=11.53, P=0.003) compared to the control group. Furthermore, the analysis of this polymorphism stratified by gender, revealed that male individuals with the homozygote deletion genotype had three times the risk of developing migraine, compared to females. The DBH insertion/deletion polymorphism is in linkage disequilibrium with the previously reported migraine associated DBH microsatellite and this insertion/deletion polymorphism is functional, which may explain a potential role in susceptibility to migraine.
Resumo:
Objective Ankylosing spondylitis (AS) is a highly heritable common inflammatory arthritis that targets the spine and sacroiliac joints of the pelvis, causing pain and stiffness and leading eventually to joint fusion. Although previous studies have shown a strong association of IL23R with AS in white Europeans, similar studies in East Asian populations have shown no association with common variants of IL23R, suggesting either that IL23R variants have no role or that rare genetic variants contribute. The present study was undertaken to screen IL23R to identify rare variants associated with AS in Han Chinese. Methods A 170-kb region containing IL23R and its flanking regions was sequenced in 50 patients with AS and 50 ethnically matched healthy control subjects from a Han Chinese population. In addition, the 30-kb region of peak association in white Europeans was sequenced in 650 patients with AS and 1,300 healthy controls. Validation genotyping was undertaken in 846 patients with AS and 1,308 healthy controls. Results We identified 1,047 variants, of which 729 were not found in the dbSNP genomic build 130. Several potentially functional rare variants in IL23R were identified, including one nonsynonomous single-nucleotide polymorphism (nsSNP), Gly149Arg (position 67421184 GA on chromosome 1). Validation genotyping showed that the Gly149Arg variant was associated with AS (odds ratio 0.61, P = 0.0054). Conclusion This is the first study to implicate rare IL23R variants in the pathogenesis of AS. The results identified a low-frequency nsSNP with predicted loss-of-function effects that was protectively associated with AS in Han Chinese, suggesting that decreased function of the interleukin-23 (IL-23) receptor protects against AS. These findings further support the notion that IL-23 signaling has an important role in the pathogenesis of AS.
Resumo:
We investigated the role of two genes, ANKH and TNAP, in patients with cuff tear arthropathy. These genes encode proteins which regulate the extracellular concentration of inorganic pyrophosphate, fluctuations of which can lead to calcium crystal formation. Variants were detected by direct sequencing of DNA and their frequencies compared with healthy controls. The effect of variants on protein function was further studied by in vitro approaches. Variant genotypes were observed more frequently in the cases when compared with controls in ANKH (45% and 20%) and TNAP (32% and 9%). Variants in ANKH altered inorganic pyrophosphate (PPi) concentrations in transfected human chondrocytes. There was a higher mean serum concentration of TNAP detected in female patients compared with normal ranges. Cuff tear arthropathy is associated with variants in ANKH and TNAP that alter extracellular inorganic pyrophosphate concentrations causing calcium crystal deposition. This supports a theory that genetic variants predispose patients to primary crystal deposition which when combined with a massive rotator cuff tear leads to the development of arthritis.
Resumo:
Endosplasmic reticulum aminopeptidase 1 (ERAP1), endoplasmic reticulum aminopeptidase 2 (ERAP2) and puromycin-sensitive aminopeptidase (NPEPPS) are key zinc metallopeptidases that belong to the oxytocinase subfamily of M1 aminopeptidase family. NPEPPS catalyzes the processing of proteosome-derived peptide repertoire followed by trimming of antigenic peptides by ERAP1 and ERAP2 for presentation on major histocompatibility complex (MHC) Class I molecules. A series of genome-wide association studies have demonstrated associations of these aminopeptidases with a range of immune-mediated diseases such as ankylosing spondylitis, psoriasis, Behçet's disease, inflammatory bowel disease and type I diabetes, and significantly, genetic interaction between some aminopeptidases and HLA Class I loci with which these diseases are strongly associated. In this review, we highlight the current state of understanding of the genetic associations of this class of genes, their functional role in disease, and potential as therapeutic targets.
Resumo:
Objectives. To confirm the association of a functional single-nucleotide polymorphism (SNP), C1858T (rs2476601), in the PTPN22 gene of British Caucasian rheumatoid arthritis (RA) patients and to evaluate its influence on the RA phenotype. Methods. A total of 686 RA patients and 566 healthy volunteers, all of British Caucasian origin, were genotyped for C1858T polymorphism by PCR-restriction fragment length polymorphism assay. Data were analysed using SPSS software and the χ 2 test as applicable. Results. The PTPN22 1858T risk allele was more prevalent in the RA patients (13.9%) compared with the healthy controls (10.3%) (P = 0.008, odds ratio 1.4, 95% confidence interval 1.09-1.79). The association of the T allele was restricted to those with rheumatoid factor (RF)-positive disease (n = 524, 76.4%) (P = 0.004, odds ratio 1.5, 95% confidence interval 1.1-1.9). We found no association between PTPN22 and the presence of the HLA-DRB1 shared epitope or clinical characteristics. Conclusions. We confirmed the previously reported association of PTPN22 with RF-positive RA, which was independent from the HLA-DRB1 genotype.
Resumo:
The role of the CTLA-4 antigen in the development of autoimmune diseases is well documented, with several autoimmune disorders showing association or linkage with the CTLA-4 locus. Its role in the aetiology of rheumatoid arthritis (RA) however, remains unclear, as the functional studies of the B7-CTLA-4 pathway in mouse models of RA and genetic studies in humans have given contrasting results. We have studied the single nucleotide polymorphism at position +49 (A/G) of the CTLA-4 gene, in a cohort of 421 RA cases and 452 healthy controls from the UK. Despite the high statistical power to detect even a weak susceptibility effect, no significant association was found. We also analysed the distribution of the allele and genotype frequencies with respect to the presence of the shared epitope (a known RA susceptibility factor) and found no statistically significant differences. We conclude that, although the importance of the B7-CTLA-4 interaction in the development of RA can not be excluded, the CTLA-4 gene is unlikely to be a predisposing factor to this disease.
Resumo:
Alcohol consumption is a moderately heritable trait, but the genetic basis in humans is largely unknown, despite its clinical and societal importance. We report a genome-wide association study meta-analysis of approximately 2.5 million directly genotyped or imputed SNPs with alcohol consumption (gram per day per kilogram body weight) among 12 population-based samples of European ancestry, comprising 26,316 individuals, with replication genotyping in an additional 21,185 individuals. SNP rs6943555 in autism susceptibility candidate 2 gene (AUTS2) was associated with alcohol consumption at genome-wide significance (P = 4 x 10(-8) to P = 4 x 10(-9)). We found a genotype-specific expression of AUTS2 in 96 human prefrontal cortex samples (P = 0.026) and significant (P < 0.017) differences in expression of AUTS2 in whole-brain extracts of mice selected for differences in voluntary alcohol consumption. Down-regulation of an AUTS2 homolog caused reduced alcohol sensitivity in Drosophila (P < 0.001). Our finding of a regulator of alcohol consumption adds knowledge to our understanding of genetic mechanisms influencing alcohol drinking behavior.
Resumo:
Introduction Single nucleotide polymorphisms in ERAP2 are strongly associated with ankylosing spondylitis (AS). One AS-associated single nucleotide polymorphism, rs2248374, causes a truncated ERAP2 protein that is degraded by nonsense-mediated decay. Approximately 25% of the populations of European ancestry are therefore natural ERAP2 knockouts. We investigated the effect of this associated variant on HLA class I allele presentation, surface heavy chains, endoplasmic reticulum (ER) stress markers and cytokine gene transcription in AS. Methods Patients with AS and healthy controls with either AA or GG homozygous status for rs2248374 were studied. Antibodies to CD14, CD19-ECD, HLA-A-B-C, Valpha7.2, CD161, anti-HC10 and anti-HLA-B27 were used to analyse peripheral blood mononuclear cells. Expression levels of ER stress markers (GRP78 and CHOP) and proinflammatory genes (tumour necrosis factor (TNF), IL6, IL17 and IL22) were assessed by qPCR. Results There was no significant difference in HLAclass I allele presentation or major histocompatibility class I heavy chains or ER stress markers GRP78 and CHOP or proinflammatory gene expression between genotypes for rs2248374 either between cases, between cases and controls, and between controls. Discussion Large differences were not seen in HLAB27 expression or cytokine levels between subjects with and without ERAP2 in AS cases and controls. This suggests that ERAP2 is more likely to influence AS risk through other mechanisms.
Resumo:
MicroRNAs (miRNAs) are critical post-transcriptional regulators. Based on a previous genome-wide association (GWA) scan, we conducted a polymorphism in microRNAs' Target Sites (poly-miRTS)-centric multistage meta-analysis for lumbar spine (LS)-, total hip (HIP)-, and femoral neck (FN)-bone mineral density (BMD). In stage I, 41,102 poly-miRTSs were meta-analyzed in 7 cohorts with a genome-wide significance (GWS) α=0.05/41,102=1.22×10-6. By applying α=5×10-5 (suggestive significance), 11 poly-miRTSs were selected, with FGFRL1 rs4647940 and PRR5 rs3213550 as top signals for FN-BMD (P-value=7.67×10-6 and 1.58×10-5) in gender-combined sample. In stage II in silico replication (two cohorts), FGFRL1 rs4647940 was the only signal marginally replicated for FN-BMD (P-value=5.08×10-3) at α=0.10/11=9.09×10-3. PRR5 rs3213550 was also selected based on biological significance. In stage III de novo genotyping replication (two cohorts), FGFRL1 rs4647940 was the only signal significantly replicated for FN-BMD (P-value=7.55×10-6) at α=0.05/2=0.025 in gender-combined sample. Aggregating three stages, FGFRL1 rs4647940 was the single stage I-discovered and stages II- and III-replicated signal attaining GWS for FN-BMD (P-value=8.87×10-12). Dual-luciferase reporter assays demonstrated that FGFRL1 3' untranslated region harboring rs4647940 appears to be hsa-miR-140-5p's target site. In a zebrafish microinjection experiment, dre-miR-140-5p is shown to exert a dramatic impact on craniofacial skeleton formation. Taken together, we provided functional evidence for a novel FGFRL1 poly-miRTS rs4647940 in a previously known 4p16.3 locus, and experimental and clinical genetics studies have shown both FGFRL1 and hsa-miR-140-5p are important for bone formation. © The Author 2015. Published by Oxford University Press. All rights reserved.