78 resultados para Freeze-dried

em Queensland University of Technology - ePrints Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Demineralized freeze-dried bone allografts (DFDBAs) have been proposed as a useful adjunct in periodontal therapy to induce periodontal regeneration through the induction of new bone formation. The presence of bone morphogenetic proteins (BMPs) within the demineralized matrix has been proposed as a possible mechanism through which DFDBA may exert its biologic effect. However, in recent years, the predictability of results using DFDBA has been variable and has led to its use being questioned. One reason for the variability in tissue response may be attributed to differences in the processing of DFDBA, which may lead to loss of activity of any bioactive substances within the DFDBA matrix. Therefore, the purpose of this investigation was to determine whether there are detectable levels of bone morphogenetic proteins in commercial DFDBA preparations. METHODS: A single preparation of DFDBA was obtained from three commercial sources. Each preparation was studied in triplicate. Proteins within the DFDBA samples were first extracted with 4M guanidinium HCI for seven days at 40 degrees celsius and the residue was further extracted with 4M guanidinium HCL/EDTA for seven days at 40 degrees celsius. Two anti-human BMP-2 and -4 antibodies were used for the detection of the presence of BMP's in the extracts. RESULTS: Neither BMP-2 nor BMP-4 was detected in any of the extracts. When recombinant human BMP-2 and -4 were added throughout the extraction process of DFDBA extraction, not only were intact proteins detected but smaller molecular weight fragments were also noted in the extract. CONCLUSIONS: These results indicate that all of the DFDBA samples tested had no detectable amounts of BMP-2 and -4. In addition, an unknown substance present in the DFDBA may be responsible for degradation of whatever BMPs might be present.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oral administration of dry vaccine formulations is acknowledged to offer major clinical and logistical benefits by eliminating the cold chain required for liquid preparations. A model antigen, bovine serum albumin (BSA) was encapsulated in alginate microspheres using aerosolisation. Hydrated microspheres 25 to 65 μm in size with protein loading of 3.3 % w/w were obtained. Environmental scanning electron microscopy indicated a stabilizing effect of encapsulated protein on alginate hydrogels revealed by an increase in dehydration resistance. Freeze drying of alginate microspheres without use of a cryoprotectant resulted in fragmentation and subsequent rapid loss of the majority of the protein load in simulated intestinal fluid in 2 h, whereas intact microspheres were observed following freeze-drying of BSA-loaded microspheres in the presence of maltodextrin. BSA release from freeze-dried preparations was limited to less than 7 % in simulated gastric fluid over 2 h, while 90 % of the protein load was gradually released in simulated intestinal fluid over 10 h. SDS-PAGE analysis indicated that released BSA largely preserved its molecular weight. These findings demonstrate the potential for manufacturing freeze-dried oral vaccines using alginate microspheres.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The microstructures of YBa2Cu3O7-δ ceramics prepared from freeze dried powders and containing an excess of CuO have been studied by analytical electron microscopy. Special attention has been paid to the interfacial microstructure. It was found that a liquid phase formed during sintering between 890°C and 920°C and this promoted grain growth and densification. Both clean grain boundaries and boundaries containing an amorphous intergranular film, which was rich in Cu, have been observed. Both CuO and BaCuO2 were present as secondary phases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A high-throughput method of isolating and cloning geminivirus genomes from dried plant material, by combining an Extract-n-Amp™-based DNA isolation technique with rolling circle amplification (RCA) of viral DNA, is presented. Using this method an attempt was made to isolate and clone full geminivirus genomes/genome components from 102 plant samples, including dried leaves stored at room temperature for between 6 months and 10 years, with an average hands-on-time to RCA-ready DNA of 15 min per 20 samples. While storage of dried leaves for up to 6 months did not appreciably decrease cloning success rates relative to those achieved with fresh samples, efficiency of the method decreased with increasing storage time. However, it was still possible to clone virus genomes from 47% of 10-year-old samples. To illustrate the utility of this simple method for high-throughput geminivirus diversity studies, six Maize streak virus genomes, an Abutilon mosaic virus DNA-B component and the DNA-A component of a previously unidentified New Word begomovirus species were fully sequenced. Genomic clones of the 69 other viruses were verified as such by end sequencing. This method should be extremely useful for the study of any circular DNA plant viruses with genome component lengths smaller than the maximum size amplifiable by RCA. © 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dehydration of food materials requires water removal from it. This removal of moisture prevents the growth and reproduction of microorganisms that cause decay and minimizes many of the moisture-driven deterioration reactions (Brennan, 1994). However, during food drying, many other changes occur simultaneously resulting in a modified overall quality (Kompany et al., 1993). Among the physical attributes of dried food material porosity and microstructure are the important ones that can dominant other quality of dried foods (Aguilera et al., 2000). In addition, this two concerned quality attributes affected by process conditions, material components and raw structure of food stuff. In this work, temperature moisture distribution within food materials during microwave drying will be taken into consideration to observe its participation on the microstructure and porosity of the finished product. Apple is the selective materials for this work. Generally, most of the food materials are found in non-uniformed moisture contained condition. To develop non uniform temperature distribution, food materials have been dried in a microwave oven with different power levels (Chua et al., 2000). First of all, temperature and moisture model is simulated by COMSOL Multiphysics. Later on, digital imaging camera and Image Pro Premier software have been deployed to observation moisture distribution and thermal imaging camera for temperature distribution. Finally, Microstructure and porosity of the food materials are obtained from scanning electron microscope and porosity measuring devices respectively . Moisture distribution and temperature during drying influence the microstructure and porosity significantly. Specially, High temperature and moisture contained regions show less porosity and more rupture. These findings support other literatures of Halder et al. (2011) and Rahman et al (1990). On the other hand, low temperature and moisture regions depict uniform microstructure and high porosity. This work therefore assists in better understanding of the role of moisture and temperature distribution to a prediction of micro structure and porosity of dried food materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new bioluminescent creatine kinase (CK) assay using purified luciferase was used to analyse CK activity in serum samples dried on filter paper. Enzyme activity was preserved for over 1 wk on paper stored at room temperature. At 60°C, CK activity in liquid serum samples was rapidly inactivated, but the activity of enzyme stored on paper was preserved for at least 2 days.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The quality of dried food is affected by a number of factors including quality of raw material, initial microstructure, and drying conditions. The structure of the food materials goes through deformations due to the simultaneous effect of heat and mass transfer during the drying process. Shrinkage and changes in porosity, microstructure and appearance are some of the most remarkable features that directly influence overall product quality. Porosity and microstructure are the important material properties in relation to the quality attributes of dried foods. Fractal dimension (FD) is a quantitative approach of measuring surface, pore characteristics, and microstructural changes [1]. However, in the field of fractal analysis, there is a lack of research in developing relationship between porosity, shrinkage and microstructure of different solid food materials in different drying process and conditions [2-4]. Establishing a correlation between microstructure and porosity through fractal dimension during convective drying is the main objective of this work.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study cell wall properties; moisture distribution, stiffness, thickness and cell dimension have been taken into consideration. Cell wall stiffness dependent on complex combination of plant cell microstructures, composition and water holding capacity of the cell. In this work, some preliminary steps taken by investing cell wall properties of apple in order to predict change of porosity and shrinkage during drying. Two different types of apple cell wall characteristic were investigated to correlate with porosity and shrinkage after convective drying. A scanning electron microscope (SEM), 2N Intron, a pyncometer and image J software were used in order to measure and analyze cell characteristics, water dynamics, porosity and shrinkage. Cell stiffness of red delicious apple was found higher than granny smith apples. A significant relationship has found between cell wall characteristics and both heat and mass transfer. Consequently, evolution of porosity and shrinkage noticeably influenced during convective drying by the nature of cell wall. This study has brought better understanding of porosity and shrinkage of dried food stuff in microscopic (cell) level and would provide better insight to attain energy effective drying process and quality food stuff.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is growing interest in the biomechanics of ‘fusionless’ implant constructs used for deformity correction in the thoracic spine, however, there are questions over the comparability of in vitro biomechanical studies from different research groups due to the various methods used for specimen preparation, testing and data collection. The aim of this study was to identify the effect of two key factors on the stiffness of immature bovine thoracic spine motion segments: (i) repeated cyclic loading and (ii) multiple freeze-thaw cycles, to aid in the planning and interpretation of in vitro studies. Two groups of thoracic spine motion segments from 6-8 week old calves were tested in flexion/extension, right/left lateral bending, and right/left axial rotation under moment control. Group (A) were tested with continuous repeated cyclic loading for 500 cycles with data recorded at cycles 3, 5, 10, 25, 50, 100, 200, 300, 400 and 500. Group (B) were tested after each of five freeze-thaw sequences, with data collected from the 10th load cycle in each sequence. Group A: Flexion/extension stiffness reduced significantly over the 500 load cycles (-22%; P=0.001), but there was no significant change between the 5th and 200th load cycles. Lateral bending stiffness decreased significantly (-18%; P=0.009) over the 500 load cycles, but there was no significant change in axial rotation stiffness (P=0.137). Group B: There was no significant difference between mean stiffness over the five freeze-thaw sequences in flexion/extension (P=0.813) and a near significant reduction in mean stiffness in axial rotation (-6%; P=0.07). However, there was a statistically significant increase in stiffness in lateral bending (+30%; P=0.007). Comparison of in vitro testing results for immature thoracic bovine spine segments between studies can be performed with up to 200 load cycles without significant changes in stiffness. However, when testing protocols require greater than 200 cycles, or when repeated freeze-thaw cycles are involved, it is important to account for the effect of cumulative load and freeze-thaw cycles on spine segment stiffness.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The preservation technique of drying offers a significant increase in the shelf life of food materials, along with the modification of quality attributes due to simultaneous heat and mass transfer. Variations in porosity are just one of the microstructural changes that take place during the drying of most food materials. Some studies found that there may be a relationship between porosity and the properties of dried foods. However, no conclusive relationship has yet been established in the literature. This paper presents an overview of the factors that influence porosity, as well as the effects of porosity on dried food quality attributes. The effect of heat and mass transfer on porosity is also discussed along with porosity development in various drying methods. After an extensive review of the literature concerning the study of porosity, it emerges that a relationship between process parameters, food qualities, and sample properties can be established. Therefore, we propose a hypothesis of relationships between process parameters, product quality attributes, and porosity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Water removal during drying depends on the pathway of water migration from food materials. Moreover, the water removal rate also depends on the characteristics of the cell wall of plant tissue. In this study, the influence of cell wall properties (such as moisture distribution, stiffness, thickness and cell dimension) on porosity and shrinkage of dried product was investigated. Cell wall stiffness depends on a complex combination of plant cell microstructure, composition of food materials and the water-holding capacity of the cell. In this work, a preliminary investigation of the cell wall properties of apple was conducted in order to predict changes of porosity and shrinkage during drying. Cell wall characteristics of two types of apple (Granny Smith and Red Delicious) were investigated under convective drying to correlate with porosity and shrinkage. A scanning electron microscope (SEM), 2kN Intron, pycnometer and ImageJ software were used in order to measure and analyse cell characteristics, water holding capacity of cell walls, porosity and shrinkage. The cell firmness of the Red Delicious apple was found to be higher than for Granny Smith apples. A remarkable relationship was observed between cell wall characteristics when compare with heat and mass transfer characteristics. It was also found that the evolution of porosity and shrinkage are noticeably influenced by the nature of the cell wall during convective drying. This study has revealed a better understanding of porosity and the shrinkage of dried food at microscopy (cell) level, and will provide better insights to attain energy-effective drying processes and improved quality of dried foods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Porosity is one of the key parameters of the macroscopic structure of porous media, generally defined as the ratio of the free spaces occupied (by the volume of air) within the material to the total volume of the material. Porosity is determined by measuring skeletal volume and the envelope volume. Solid displacement method is one of the inexpensive and easy methods to determine the envelope volume of a sample with an irregular shape. In this method, generally glass beads are used as a solid due to their uniform size, compactness and fluidity properties. The smaller size of the glass beads means that they enter into the open pores which have a larger diameter than the glass beads. Although extensive research has been carried out on porosity determination using displacement method, no study exists which adequately reports micro-level observation of the sample during measurement. This study set out with the aim of assessing the accuracy of solid displacement method of bulk density measurement of dried foods by micro-level observation. Solid displacement method of porosity determination was conducted using a cylindrical vial (cylindrical plastic container) and 57 µm glass beads in order to measure the bulk density of apple slices at different moisture contents. A scanning electron microscope (SEM), a profilometer and ImageJ software were used to investigate the penetration of glass beads into the surface pores during the determination of the porosity of dried food. A helium pycnometer was used to measure the particle density of the sample. Results show that a significant number of pores were large enough to allow the glass beads to enter into the pores, thereby causing some erroneous results. It was also found that coating the dried sample with appropriate coating material prior to measurement can resolve this problem.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Developing nano/micro-structures which can effectively upgrade the intriguing properties of electrode materials for energy storage devices is always a key research topic. Ultrathin nanosheets were proved to be one of the potential nanostructures due to their high specific surface area, good active contact areas and porous channels. Herein, we report a unique hierarchical micro-spherical morphology of well-stacked and completely miscible molybdenum disulfide (MoS2) nanosheets and graphene sheets, were successfully synthesized via a simple and industrial scale spray-drying technique to take the advantages of both MoS2 and graphene in terms of their high practical capacity values and high electronic conductivity, respectively. Computational studies were performed to understand the interfacial behaviour of MoS2 and graphene, which proves high stability of the composite with high interfacial binding energy (−2.02 eV) among them. Further, the lithium and sodium storage properties have been tested and reveal excellent cyclic stability over 250 and 500 cycles, respectively, with the highest initial capacity values of 1300 mAh g−1 and 640 mAh g−1 at 0.1 A g−1.