73 resultados para Fractal geometry

em Queensland University of Technology - ePrints Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

During the late 20th century it was proposed that a design aesthetic reflecting current ecological concerns was required within the overall domain of the built environment and specifically within landscape design. To address this, some authors suggested various theoretical frameworks upon which such an aesthetic could be based. Within these frameworks there was an underlying theme that the patterns and processes of Nature may have the potential to form this aesthetic — an aesthetic based on fractal rather than Euclidean geometry. In order to understand how fractal geometry, described as the geometry of Nature, could become the referent for a design aesthetic, this research examines the mathematical concepts of fractal Geometry, and the underlying philosophical concepts behind the terms ‘Nature’ and ‘aesthetics’. The findings of this initial research meant that a new definition of Nature was required in order to overcome the barrier presented by the western philosophical Nature¯culture duality. This new definition of Nature is based on the type and use of energy. Similarly, it became clear that current usage of the term aesthetics has more in common with the term ‘style’ than with its correct philosophical meaning. The aesthetic philosophy of both art and the environment recognises different aesthetic criteria related to either the subject or the object, such as: aesthetic experience; aesthetic attitude; aesthetic value; aesthetic object; and aesthetic properties. Given these criteria, and the fact that the concept of aesthetics is still an active and ongoing philosophical discussion, this work focuses on the criteria of aesthetic properties and the aesthetic experience or response they engender. The examination of fractal geometry revealed that it is a geometry based on scale rather than on the location of a point within a three-dimensional space. This enables fractal geometry to describe the complex forms and patterns created through the processes of Wild Nature. Although fractal geometry has been used to analyse the patterns of built environments from a plan perspective, it became clear from the initial review of the literature that there was a total knowledge vacuum about the fractal properties of environments experienced every day by people as they move through them. To overcome this, 21 different landscapes that ranged from highly developed city centres to relatively untouched landscapes of Wild Nature have been analysed. Although this work shows that the fractal dimension can be used to differentiate between overall landscape forms, it also shows that by itself it cannot differentiate between all images analysed. To overcome this two further parameters based on the underlying structural geometry embedded within the landscape are discussed. These parameters are the Power Spectrum Median Amplitude and the Level of Isotropy within the Fourier Power Spectrum. Based on the detailed analysis of these parameters a greater understanding of the structural properties of landscapes has been gained. With this understanding, this research has moved the field of landscape design a step close to being able to articulate a new aesthetic for ecological design.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Because aesthetics can have a profound effect upon the human relationship to the non-human environment the importance of aesthetics to ecologically sustainable designed landscapes has been acknowledged. However, in recognition that the physical forms of designed landscapes are an expression of the social values of the time, some design professionals have called for a new aesthetic ― one that reflects these current ecological concerns. To address this, some authors have suggested various theoretical design frameworks upon which such an aesthetic could be based. Within these frameworks there is an underlying theme that the patterns and processes of natural systems have the potential to form a new aesthetic for landscape design —an aesthetic based on fractal rather than Euclidean geometry. Perry, Reeves and Sim (2008) have shown that it is possible to differentiate between different landscape forms by fractal analysis. However, this research also shows that individual scenes from within very different landscape forms can possess the same fractal properties. Early data, revealed by transforming landscape images from the spatial to the frequency domain, using the fast Fourier transform, suggest that fractal patterning can have a significant effect within the landscape. In fact, it may be argued that any landscape design that includes living processes will include some design element whose ultimate form can only be expressed through the mathematics of fractal geometry. This paper will present ongoing research into the potential role of fractal geometry as a basis for a new form language – a language that may articulate an aesthetic for landscape design that echoes our ecological awakening.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Small-angle and ultra-small-angle neutron scattering (SANS and USANS), low-pressure adsorption (N2 and CO2), and high-pressure mercury intrusion measurements were performed on a suite of North American shale reservoir samples providing the first ever comparison of all these techniques for characterizing the complex pore structure of shales. The techniques were used to gain insight into the nature of the pore structure including pore geometry, pore size distribution and accessible versus inaccessible porosity. Reservoir samples for analysis were taken from currently-active shale gas plays including the Barnett, Marcellus, Haynesville, Eagle Ford, Woodford, Muskwa, and Duvernay shales. Low-pressure adsorption revealed strong differences in BET surface area and pore volumes for the sample suite, consistent with variability in composition of the samples. The combination of CO2 and N2 adsorption data allowed pore size distributions to be created for micro–meso–macroporosity up to a limit of �1000 Å. Pore size distributions are either uni- or multi-modal. The adsorption-derived pore size distributions for some samples are inconsistent with mercury intrusion data, likely owing to a combination of grain compression during high-pressure intrusion, and the fact that mercury intrusion yields information about pore throat rather than pore body distributions. SANS/USANS scattering data indicate a fractal geometry (power-law scattering) for a wide range of pore sizes and provide evidence that nanometer-scale spatial ordering occurs in lower mesopore–micropore range for some samples, which may be associated with inter-layer spacing in clay minerals. SANS/USANS pore radius distributions were converted to pore volume distributions for direct comparison with adsorption data. For the overlap region between the two methods, the agreement is quite good. Accessible porosity in the pore size (radius) range 5 nm–10 lm was determined for a Barnett shale sample using the contrast matching method with pressurized deuterated methane fluid. The results demonstrate that accessible porosity is pore-size dependent.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Faces are complex patterns that often differ in only subtle ways. Face recognition algorithms have difficulty in coping with differences in lighting, cameras, pose, expression, etc. We propose a novel approach for facial recognition based on a new feature extraction method called fractal image-set encoding. This feature extraction method is a specialized fractal image coding technique that makes fractal codes more suitable for object and face recognition. A fractal code of a gray-scale image can be divided in two parts – geometrical parameters and luminance parameters. We show that fractal codes for an image are not unique and that we can change the set of fractal parameters without significant change in the quality of the reconstructed image. Fractal image-set coding keeps geometrical parameters the same for all images in the database. Differences between images are captured in the non-geometrical or luminance parameters – which are faster to compute. Results on a subset of the XM2VTS database are presented.