299 resultados para Four-level alkaline earth atomic systems
em Queensland University of Technology - ePrints Archive
Resumo:
Purpose Multi-level diode-clamped inverters have the challenge of capacitor voltage balancing when the number of DC-link capacitors is three or more. On the other hand, asymmetrical DC-link voltage sources have been applied to increase the number of voltage levels without increasing the number of switches. The purpose of this paper is to show that an appropriate multi-output DC-DC converter can resolve the problem of capacitor voltage balancing and utilize the asymmetrical DC-link voltages advantages. Design/methodology/approach A family of multi-output DC-DC converters is presented in this paper. The application of these converters is to convert the output voltage of a photovoltaic (PV) panel to regulate DC-link voltages of an asymmetrical four-level diode-clamped inverter utilized for domestic applications. To verify the versatility of the presented topology, simulations have been directed for different situations and results are presented. Some related experiments have been developed to examine the capabilities of the proposed converters. Findings The three-output voltage-sharing converters presented in this paper have been mathematically analysed and proven to be appropriate to improve the quality of the residential application of PV by means of four-level asymmetrical diode-clamped inverter supplying highly resistive loads. Originality/value This paper shows that an appropriate multi-output DC-DC converter can resolve the problem of capacitor voltage balancing and utilize the asymmetrical DC-link voltages advantages and that there is a possibility of operation at high-modulation index despite reference voltage magnitude and power factor variations.
Resumo:
A suite of new materials, based on chemical modification of kaolins, has been successfully prepared via manipulation of the kaolin structure and subsequent intercalation by CaCl2 and MgCl2. A standard kaolinite(KGa-1)and a commercially available halloysite (New Zealand china clay) were used for this study. The kaolins are given several cycles of intercalation and deintercalation using a common intercalant such as potassium acetate. The number of cycles given depends on the type of kaolin. After this treatment, both kaolinite and halloysite hydrate show considerable broadening of the (00l) reflections which indicate extensive exfoliation of the layers. In the case of kaolinite, exfoliated layers roll to form tubes similar to proper halloysite. Kaolins modified by the above treatment readily intercalate MgCl2 and CaCl2 from saturated solutions of these salts. On intercalation with CaCl2 and MgCl2, kaolinite layers expand to 10A and 9.8A, and those of halloysite to 12.8A and 15.5A, respectively. To our knowledge, this is the first report of successful intercalation of alkaline-earth halides by kaolins.
Resumo:
I develop a model of individuals’ intentions to discontinue information system use. Understanding these intentions is important because they give insights into users’ willingness to carry out system tasks, and provide a basis for maintenance decisions as well as possible replacement decisions. I offer a first conceptualization of factors determining users’ discontinuance intentions on basis of existing literature on technology use, status quo bias and dual factor concepts. The model is grounded in rational choice theory to distinguish determinants of a conscious decision between continuing or discontinuing IS use. I provide details on the empirical test of the model through a field study of IS users in a retail organization. The work will have implications for theory on information systems continuance and dual-factor logic in information system use. The empirical findings will provide suggestions for managers dealing with cessation of information systems and work routine changes in organizations.
Resumo:
There is consistent evidence showing that driver behaviour contributes to crashes and near miss incidents at railway level crossings (RLXs). The development of emerging Vehicle-to-Vehicle and Vehicle-to-Infrastructure technologies is a highly promising approach to improve RLX safety. To date, research has not evaluated comprehensively the potential effects of such technologies on driving behaviour at RLXs. This paper presents an on-going research programme assessing the impacts of such new technologies on human factors and drivers’ situational awareness at RLX. Additionally, requirements for the design of such promising technologies and ways to display safety information to drivers were systematically reviewed. Finally, a methodology which comprehensively assesses the effects of in-vehicle and road-based interventions warning the driver of incoming trains at RLXs is discussed, with a focus on both benefits and potential negative behavioural adaptations. The methodology is designed for implementation in a driving simulator and covers compliance, control of the vehicle, distraction, mental workload and drivers’ acceptance. This study has the potential to provide a broad understanding of the effects of deploying new in-vehicle and road-based technologies at RLXs and hence inform policy makers on safety improvements planning for RLX.
Resumo:
There is a continuing need to improve safety at Railway Level Crossings (RLX) particularly those that do not have gates and lights regulating traffic flow. A number of Intelligent Transport System (ITS) interventions have been proposed to improve drivers’ awareness and reduce errors in detecting and responding appropriately at level crossings. However, as with other technologies, successful implementation and ultimately effectiveness rests with the acceptance of the technology by the end user. In the current research, four focus groups were held (n=38) with drivers in metropolitan and regional locations in Queensland to examine their perceptions of potential in-vehicle and road-based ITS interventions to improve safety at RLX. The findings imply that further development of the ITS interventions, in particular the design and related promotion of the final product, must consider ease of use, usefulness and relative cost.
Resumo:
Safety at railway level crossings (RLX) is one part of a wider picture of safety within the whole transport system. Governments, the rail industry and road organisations have used a variety of countermeasures for many years to improve RLX safety. New types of interventions are required in order to reduce the number of crashes and associated social costs at railway crossings. This paper presents the results of a large research program which aimed to assess the effectiveness of emerging Intelligent Transport Systems (ITS) interventions, both on-road and in-vehicle based, to improve the safety of car drivers at RLXs in Australia. The three most promising technologies selected from the literature review and focus groups were tested in an advanced driving simulator to provide a detailed assessment of their effects on driver behaviour. The three interventions were: (i) in-vehicle visual warning using a GPS/smartphone navigation-like system, (ii) in-vehicle audio warning and; (iii) on-road intervention known as valet system (warning lights on the road surface activated as a train approaches). The effects of these technologies on 57 participants were assessed in a systematic approach focusing on the safety of the intervention, effects on the road traffic around the crossings and driver’s acceptance of the technology. Given that the ITS interventions were likely to provide a benefit by improving the driver’s awareness of the crossing status in low visibility conditions, such conditions were investigated through curves in the track before arriving at the crossing. ITS interventions were also expected to improve driver behaviour at crossings with high traffic (blocking back issue), which were also investigated at active crossings. The key findings are: (i) interventions at passive crossings are likely to provide safety benefits; (ii) the benefits of ITS interventions on driver behaviour at active crossings are limited; (iii) the trialled ITS interventions did not show any issues in terms of driver distraction, driver acceptance or traffic delays; (iv) these interventions are easy to use, do not increase driver workload substantially; (v) participants’ intention to use the technology is high and; (vi) participants saw most value in succinct messages about approaching trains as opposed to knowing the RLX locations or the imminence of a collision with a train.
Resumo:
Association rule mining has made many advances in the area of knowledge discovery. However, the quality of the discovered association rules is a big concern and has drawn more and more attention recently. One problem with the quality of the discovered association rules is the huge size of the extracted rule set. Often for a dataset, a huge number of rules can be extracted, but many of them can be redundant to other rules and thus useless in practice. Mining non-redundant rules is a promising approach to solve this problem. In this paper, we firstly propose a definition for redundancy; then we propose a concise representation called Reliable basis for representing non-redundant association rules for both exact rules and approximate rules. An important contribution of this paper is that we propose to use the certainty factor as the criteria to measure the strength of the discovered association rules. With the criteria, we can determine the boundary between redundancy and non-redundancy to ensure eliminating as many redundant rules as possible without reducing the inference capacity of and the belief to the remaining extracted non-redundant rules. We prove that the redundancy elimination based on the proposed Reliable basis does not reduce the belief to the extracted rules. We also prove that all association rules can be deduced from the Reliable basis. Therefore the Reliable basis is a lossless representation of association rules. Experimental results show that the proposed Reliable basis can significantly reduce the number of extracted rules.
Resumo:
There is a trade off between a number of output voltage levels and the reliability and efficiency of a multilevel converter. A new configuration of diode-clamped multilevel inverters with a different combination of DC link capacitors voltage has been proposed in this paper. Two different symmetrical and asymmetrical unequal arrangements for a four-level diode-clamped inverter have been compared, in order to find an optimum arrangement with lower switching losses and optimised output voltage quality. The simulation and hardware results for a four-level inverter show that the asymmetrical configuration can obtain more output voltage levels with the same number of components compared with a conventional four-level inverter and this will lead to the reduction of the harmonic content of the output voltage. A new family of multi-output DC-DC converters with a simple control strategy has been utilised as a front-end converter to supply the DC link capacitor voltages for the optimised configuration.
Resumo:
The Queensland University of Technology (QUT) allows the presentation of theses for the Degree of Doctor of Philosophy in the format of published or submitted papers, where such papers have been published, accepted or submitted during the period of candidature. This thesis is composed of ten published /submitted papers and book chapters of which nine have been published and one is under review. This project is financially supported by an Australian Research Council (ARC) Discovery Grant with the aim of investigating multilevel topologies for high quality and high power applications, with specific emphasis on renewable energy systems. The rapid evolution of renewable energy within the last several years has resulted in the design of efficient power converters suitable for medium and high-power applications such as wind turbine and photovoltaic (PV) systems. Today, the industrial trend is moving away from heavy and bulky passive components to power converter systems that use more and more semiconductor elements controlled by powerful processor systems. However, it is hard to connect the traditional converters to the high and medium voltage grids, as a single power switch cannot stand at high voltage. For these reasons, a new family of multilevel inverters has appeared as a solution for working with higher voltage levels. Besides this important feature, multilevel converters have the capability to generate stepped waveforms. Consequently, in comparison with conventional two-level inverters, they present lower switching losses, lower voltage stress across loads, lower electromagnetic interference (EMI) and higher quality output waveforms. These properties enable the connection of renewable energy sources directly to the grid without using expensive, bulky, heavy line transformers. Additionally, they minimize the size of the passive filter and increase the durability of electrical devices. However, multilevel converters have only been utilised in very particular applications, mainly due to the structural limitations, high cost and complexity of the multilevel converter system and control. New developments in the fields of power semiconductor switches and processors will favor the multilevel converters for many other fields of application. The main application for the multilevel converter presented in this work is the front-end power converter in renewable energy systems. Diode-clamped and cascade converters are the most common type of multilevel converters widely used in different renewable energy system applications. However, some drawbacks – such as capacitor voltage imbalance, number of components, and complexity of the control system – still exist, and these are investigated in the framework of this thesis. Various simulations using software simulation tools are undertaken and are used to study different cases. The feasibility of the developments is underlined with a series of experimental results. This thesis is divided into two main sections. The first section focuses on solving the capacitor voltage imbalance for a wide range of applications, and on decreasing the complexity of the control strategy on the inverter side. The idea of using sharing switches at the output structure of the DC-DC front-end converters is proposed to balance the series DC link capacitors. A new family of multioutput DC-DC converters is proposed for renewable energy systems connected to the DC link voltage of diode-clamped converters. The main objective of this type of converter is the sharing of the total output voltage into several series voltage levels using sharing switches. This solves the problems associated with capacitor voltage imbalance in diode-clamped multilevel converters. These converters adjust the variable and unregulated DC voltage generated by renewable energy systems (such as PV) to the desirable series multiple voltage levels at the inverter DC side. A multi-output boost (MOB) converter, with one inductor and series output voltage, is presented. This converter is suitable for renewable energy systems based on diode-clamped converters because it boosts the low output voltage and provides the series capacitor at the output side. A simple control strategy using cross voltage control with internal current loop is presented to obtain the desired voltage levels at the output voltage. The proposed topology and control strategy are validated by simulation and hardware results. Using the idea of voltage sharing switches, the circuit structure of different topologies of multi-output DC-DC converters – or multi-output voltage sharing (MOVS) converters – have been proposed. In order to verify the feasibility of this topology and its application, steady state and dynamic analyses have been carried out. Simulation and experiments using the proposed control strategy have verified the mathematical analysis. The second part of this thesis addresses the second problem of multilevel converters: the need to improve their quality with minimum cost and complexity. This is related to utilising asymmetrical multilevel topologies instead of conventional multilevel converters; this can increase the quality of output waveforms with a minimum number of components. It also allows for a reduction in the cost and complexity of systems while maintaining the same output quality, or for an increase in the quality while maintaining the same cost and complexity. Therefore, the asymmetrical configuration for two common types of multilevel converters – diode-clamped and cascade converters – is investigated. Also, as well as addressing the maximisation of the output voltage resolution, some technical issues – such as adjacent switching vectors – should be taken into account in asymmetrical multilevel configurations to keep the total harmonic distortion (THD) and switching losses to a minimum. Thus, the asymmetrical diode-clamped converter is proposed. An appropriate asymmetrical DC link arrangement is presented for four-level diode-clamped converters by keeping adjacent switching vectors. In this way, five-level inverter performance is achieved for the same level of complexity of the four-level inverter. Dealing with the capacitor voltage imbalance problem in asymmetrical diodeclamped converters has inspired the proposal for two different DC-DC topologies with a suitable control strategy. A Triple-Output Boost (TOB) converter and a Boost 3-Output Voltage Sharing (Boost-3OVS) converter connected to the four-level diode-clamped converter are proposed to arrange the proposed asymmetrical DC link for the high modulation indices and unity power factor. Cascade converters have shown their abilities and strengths in medium and high power applications. Using asymmetrical H-bridge inverters, more voltage levels can be generated in output voltage with the same number of components as the symmetrical converters. The concept of cascading multilevel H-bridge cells is used to propose a fifteen-level cascade inverter using a four-level H-bridge symmetrical diode-clamped converter, cascaded with classical two-level Hbridge inverters. A DC voltage ratio of cells is presented to obtain maximum voltage levels on output voltage, with adjacent switching vectors between all possible voltage levels; this can minimize the switching losses. This structure can save five isolated DC sources and twelve switches in comparison to conventional cascade converters with series two-level H bridge inverters. To increase the quality in presented hybrid topology with minimum number of components, a new cascade inverter is verified by cascading an asymmetrical four-level H-bridge diode-clamped inverter. An inverter with nineteen-level performance was achieved. This synthesizes more voltage levels with lower voltage and current THD, rather than using a symmetrical diode-clamped inverter with the same configuration and equivalent number of power components. Two different predictive current control methods for the switching states selection are proposed to minimise either losses or THD of voltage in hybrid converters. High voltage spikes at switching time in experimental results and investigation of a diode-clamped inverter structure raised another problem associated with high-level high voltage multilevel converters. Power switching components with fast switching, combined with hard switched-converters, produce high di/dt during turn off time. Thus, stray inductance of interconnections becomes an important issue and raises overvoltage and EMI issues correlated to the number of components. Planar busbar is a good candidate to reduce interconnection inductance in high power inverters compared with cables. The effect of different transient current loops on busbar physical structure of the high-voltage highlevel diode-clamped converters is highlighted. Design considerations of proper planar busbar are also presented to optimise the overall design of diode-clamped converters.
Resumo:
This paper proposes a flying-capacitor-based chopper circuit for dc capacitor voltage equalization in diode-clamped multilevel inverters. Its important features are reduced voltage stress across the chopper switches, possible reduction in the chopper switching frequency, improved reliability, and ride-through capability enhancement. This topology is analyzed using three- and four-level flying-capacitor-based chopper circuit configurations. These configurations are different in capacitor and semiconductor device count and correspondingly reduce the device voltage stresses by half and one-third, respectively. The detailed working principles and control schemes for these circuits are presented. It is shown that, by preferentially selecting the available chopper switch states, the dc-link capacitor voltages can be efficiently equalized in addition to having tightly regulated flying-capacitor voltages around their references. The various operating modes of the chopper are described along with their preferential selection logic to achieve the desired performances. The performance of the proposed chopper and corresponding control schemes are confirmed through both simulation and experimental investigations.
Resumo:
Crowdsourcing harnesses the potential of large and open networks of people. It is a relatively new phenomenon and attracted substantial interest in practice. Related research, however, lacks a theoretical foundation. We propose a system-theoretical perspective on crowdsourcing systems to address this gap and illustrate its applicability by using it to classify crowdsourcing systems. By deriving two principal dimensions from theory, we identify four fundamental types of crowdsourcing systems that help to distinguish important features of such systems. We analyse their respective characteristics and discuss implications and requirements for various aspects related to the design of such systems. Our results demonstrate that systems theory can inform the study of crowdsourcing systems. The identified system types and the implications on their design may prove useful for researchers to frame future studies and for practitioners to identify the right crowdsourcing systems for a particular purpose.
Resumo:
Enterprise Systems (ES) have emerged as possibly the most important and challenging development in the corporate use of information technology in the last decade. Organizations have invested heavily in these large, integrated application software suites expecting improvments in; business processes, management of expenditure, customer service, and more generally, competitiveness, improved access to better information/knowledge (i.e., business intelligence and analytics). Forrester survey data consistently shows that investment in ES and enterprise applications in general remains the top IT spending priority, with the ES market estimated at $38 billion and predicted to grow at a steady rate of 6.9%, reaching $50 billion by 2012 (Wang & Hamerman, 2008). Yet, organizations have failed to realize all the anticipated benefits. One of the key reasons is the inability of employees to properly utilize the capabilities of the enterprise systems to complete the work and extract information critical to decision making. In response, universities (tertiary institutes) have developed academic programs aimed at addressing the skill gaps. In parallel with the proliferation of ES, there has been growing recognition of the importance of Teaching Enterprise Systems at tertiary education institutes. Many academic papers have discused the important role of Enterprise System curricula at tertiary education institutes (Ask, 2008; Hawking, 2004; Stewart, 2001), where the teaching philosophises, teaching approaches and challenges in Enterprise Systems education were discussed. Following the global trends, tertiary institutes in the Pacific-Asian region commenced introducing Enterprise System curricula in late 1990s with a range of subjects (a subject represents a single unit, rather than a collection of units; which we refer to as a course) in faculties / schools / departments of Information Technology, Business and in some cases in Engineering. Many tertiary educations commenced their initial subject offers around four salient concepts of Enterprise Systems: (1) Enterprise Systems implementations, (2) Introductions to core modules of Enterprise Systems, (3) Application customization using a programming language (e.g. ABAP) and (4) Systems Administration. While universities have come a long way in developing curricula in the enterprise system area, many obstacles remain: high cost of technology, qualified faculty to teach, lack of teaching materials, etc.
Resumo:
Safety at Railway Level Crossings (RLXs) is an important issue within the Australian transport system. Crashes at RLXs involving road vehicles in Australia are estimated to cost $10 million each year. Such crashes are mainly due to human factors; unintentional errors contribute to 46% of all fatal collisions and are far more common than deliberate violations. This suggests that innovative intervention targeting drivers are particularly promising to improve RLX safety. In recent years there has been a rapid development of a variety of affordable technologies which can be used to increase driver’s risk awareness around crossings. To date, no research has evaluated the potential effects of such technologies at RLXs in terms of safety, traffic and acceptance of the technology. Integrating driving and traffic simulations is a safe and affordable approach for evaluating these effects. This methodology will be implemented in a driving simulator, where we recreated realistic driving scenario with typical road environments and realistic traffic. This paper presents a methodology for evaluating comprehensively potential benefits and negative effects of such interventions: this methodology evaluates driver awareness at RLXs , driver distraction and workload when using the technology . Subjective assessment on perceived usefulness and ease of use of the technology is obtained from standard questionnaires. Driving simulation will provide a model of driving behaviour at RLXs which will be used to estimate the effects of such new technology on a road network featuring RLX for different market penetrations using a traffic simulation. This methodology can assist in evaluating future safety interventions at RLXs.
Resumo:
Multilevel converters, because of the benefits they attract in generating high quality output voltage, are used in several applications. Various modulation and control techniques are introduced by several researchers to control the output voltage of the multilevel converters like space vector modulation and harmonic elimination (HE) methods. Multilevel converters may have a DC link with equal or unequal DC voltages. In this study a new HE technique based on the HE method is proposed for multilevel converters with unequal DC link voltage. The DC link voltage levels are considered as additional variables for the HE method and the voltage levels are defined based on the HE results. Increasing the number of voltage levels can reduce lower order harmonic content because of the fact that more variables are created. In comparison to previous methods, this new technique has a positive effect on the output voltage quality by reducing its total harmonic distortion, which must take into consideration for some applications such as uninterruptable power supply, motor drive systems and piezoelectric transducer excitation. In order to verify the proposed modulation technique, MATLAB simulations and experimental tests are carried out for a single-phase four-level diode-clamped converter.