3 resultados para Foodstuff

em Queensland University of Technology - ePrints Archive


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A simple and sensitive spectrophotometric method for the simultaneous determination of acesulfame-K, sodium cyclamate and saccharin sodium sweeteners in foodstuff samples has been researched and developed. This analytical method relies on the different kinetic rates of the analytes in their oxidative reaction with KMnO4 to produce the green manganate product in an alkaline solution. As the kinetic rates of acesulfame-K, sodium cyclamate and saccharin sodium were similar and their kinetic data seriously overlapped, chemometrics methods, such as partial least squares (PLS), principal component regression (PCR) and classical least squares (CLS), were applied to resolve the kinetic data. The results showed that the PLS prediction model performed somewhat better. The proposed method was then applied for the determination of the three sweeteners in foodstuff samples, and the results compared well with those obtained by the reference HPLC method.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During food drying, many other changes occur simultaneously, resulting in an improved overall quality. Among the quality attributes, the structure and its corresponding color influence directly or indirectly other properties of food. In addition, these quality attributes are affected by process conditions, material components and the raw structure of the foodstuff. In this work, the temperature distribution within food materials during microwave drying has been taken into consideration to observe its role in color modification. In order to determine the temperature distribution of microwave-dried food (apple), a thermal imaging camera has been used. The image acquired from the digital camera has been analysed using image J software in order to get the color change of fresh and dried apple. The results show that temperature distribution plays an important role in determining the quality of the food. The thermal imaging camera was deployed to observe the temperature distribution within food materials during drying. It is clearly observed from the higher value of (ERGB =102) and the uneven color change that uneven temperature distribution can influence customer perceptions of the quality of dried food. Simulation of a mathematical model of temperature distribution during microwave drying can make it possible to predict the colour and texture of the microwaved food.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Drying has been extensively used as a food preservation procedure. The longer life attained by drying is however accompanied by huge energy consumption and deterioration of quality. Moisture diffusivity is an important factor that is considered essential to understand for design, analysis, and optimization of drying processes for food and other materials. Without an accurate value of moisture diffusivity, drying kinetics, energy consumption, quality attributes such as shrinkage, texture, and microstructure cannot be predicted properly. However, moisture diffusivities differ due to variation of composition and microstructure of foodstuff and drying variables. For a particular food, it changes with many factors including moisture content, water holding capacity, process variables and physiochemical attributes of food. Published information on moisture diffusivities of banana is inadequate and sometimes inconsistent due to lack of precise repeatable analysis techniques. In this work, the effective moisture diffusivity of banana was determined by Thermogravimetric Analysis (TGA), which ensures precise measurements and reproduction of experiments. A TGA Q500 V20.13 Build 39 was deployed to obtain the drying curve of the food material. It was found that effective moisture diffusivity ranged from 6.63 x10-10 to 1.03 x10-9 and 1.34 x10-10 to 6.60 x10-10 for isothermal at 70 0C and non-isothermal process respectively.These values are consistent with the value of moisture diffusivity found in the literature.